Learning Bayesian Networks

Richard E. Neapolitan
Northeastern Illinois University
Chicago, Illinois

In memory of my dad, a difficult but loving father, who raised me well.



ii



Contents

Preface ix
I Basics 1
1 Introduction to Bayesian Networks 3
1.1 Basics of Probability Theory . . . . ... ... ... .... ... 5
1.1.1 Probability Functions and Spaces . . . . . .. . ... ... 6
1.1.2  Conditional Probability and Independence . . . . . . . .. 9
1.1.3 Bayes’ Theorem . . .. ... ... ... ... ....... 12
1.1.4 Random Variables and Joint Probability Distributions . . 13
1.2 Bayesian Inference . . . . . .. .. .. oo 20
1.2.1 Random Variables and Probabilities in Bayesian Applica-
tons . . . . .. 20
1.2.2 A Definition of Random Variables and Joint Probability
Distributions for Bayesian Inference . . . . . .. ... .. 24
1.2.3 A Classical Example of Bayesian Inference . . . . . . . .. 27
1.3 Large Instances / Bayesian Networks . . . . . . . ... ... ... 29
1.3.1 The Difficulties Inherent in Large Instances . . . . . . .. 29
1.3.2  The Markov Condition . . . . . . . ... ... ... .... 31
1.3.3 Bayesian Networks . . . . . . ... ... ... ... ... 40
1.3.4 A Large Bayesian Network . . . . ... ... .. .. ... 43
1.4 Creating Bayesian Networks Using Causal Edges . . . . .. . .. 43
1.4.1  Ascertaining Causal Influences Using Manipulation . . . . 44
1.4.2  Causation and the Markov Condition . ... ... .. .. 51
2 More DAG /Probability Relationships 65
2.1 Entailed Conditional Independencies . . . . . . .. .. ... ... 66
2.1.1 Examples of Entailed Conditional Independencies . . . . . 66
2.1.2 d-Separation . . . . .. ... 70
2.1.3 Finding d-Separations . . . . .. .. .. ... ... ... 76
2.2 Markov Equivalence . . . . . ... ... oL 84
2.3 Entailing Dependencies with a DAG . . . . ... ... ... ... 92

2.3.1 TFaithfulness . . . . . . . . . . .. ... 95

iii



iv CONTENTS

2.3.2 Embedded Faithfulness . . ... ... .. .. ......
2.4 Minimality . . ... . .o
2.5 Markov Blankets and Boundaries . . . . . .. . ... ... ...
2.6 Moreon Causal DAGs . . . ... ... ... ... ... ...,
2.6.1 The Causal Minimality Assumption . . ... ... ...
2.6.2 The Causal Faithfulness Assumption . . . . . ... ...
2.6.3 The Causal Embedded Faithfulness Assumption . . . .

IT Inference

3 Inference: Discrete Variables

3.1 Examples of Inference . . . . . . ... ... ... ... ...
3.2 Pearl’s Message-Passing Algorithm . . . . ... ... ... ...
3.2.1 Inferencein Trees. . . . . . ... .. ... .. ... ...
3.2.2 Inference in Singly-Connected Networks . . . ... . ..
3.2.3 Inference in Multiply-Connected Networks . . . . . . . .
3.2.4 Complexity of the Algorithm . . . ... ... ... ...
3.3 The Noisy OR-Gate Model . . . . ... ... ... .. .....
3.3.1 TheModel . .. .. ... ... ... ... ...
3.3.2  Doing Inference With the Model . . . . ... ... ...
3.3.3 Further Models . . . . .. ... ... ... ... . ....
3.4 Other Algorithms that Employ the DAG . . . . ... ... ...
3.5 The SPI Algorithm . . . . . ... .. ... ... ... ......
3.5.1 The Optimal Factoring Problem . . . . ... ... ...
3.5.2  Application to Probabilistic Inference . . . . ... . ..
3.6 Complexity of Inference . . . .. .. ... ... ... ......
3.7 Relationship to Human Reasoning . . . .. .. ... ... ...
3.7.1 The Causal Network Model . . . . ... ... ... ...
3.7.2  Studies Testing the Causal Network Model . . . . . ..

4 More Inference Algorithms

4.1 Continuous Variable Inference . . . . . . . .. .. ... ... ..
4.1.1 The Normal Distribution . . . ... ... .. ... ...
4.1.2  An Example Concerning Continuous Variables . . . . .
4.1.3 An Algorithm for Continuous Variables . . . ... ...

4.2 Approximate Inference . . . . . . . ... ... L.
4.2.1 A Brief Review of Sampling . . . . .. ... ... .. ..
4.2.2 Logic Sampling . . . ... ... ...
4.2.3 Likelihood Weighting . . . . . . . ... ... . ... ...

4.3 Abductive Inference . . . . ... Lo
4.3.1 Abductive Inference in Bayesian Networks . . . . . . . .
4.3.2 A Best-First Search Algorithm for Abductive Inference . .



CONTENTS v

5 Influence Diagrams 239
5.1 Decision Trees. . . . . . . . .. . o 239
5.1.1 Simple Examples . . . . .. ... ... L. 239
5.1.2 Probabilities, Time, and Risk Attitudes . . ... .. ... 242
5.1.3 Solving Decision Trees . . . . . . . . ... ... ... ... 245
5.1.4 More Examples . . . . . .. ... oL 245
5.2 Influence Diagrams . . . . . . ... ... ... ... 259
5.2.1 Representing with Influence Diagrams . . . . . ... . .. 259
5.2.2 Solving Influence Diagrams . . . . . .. ... . ... ... 266
5.3 Dynamic Networks . . . . . . ... .. oo 272
5.3.1 Dynamic Bayesian Networks . . . ... ... .. .. ... 272
5.3.2 Dynamic Influence Diagrams . . . . ... ... ... ... 279
IIT Learning 291
6 Parameter Learning: Binary Variables 293
6.1 Learning a Single Parameter . . . . . . . ... ... ... ... .. 294
6.1.1 Probability Distributions of Relative Frequencies . . . . . 294
6.1.2 Learning a Relative Frequency . . ... ... .. ... .. 303
6.2 More on the Beta Density Function . . . . .. ... ... ... .. 310
6.2.1 Non-integral Valuesof aand b . . ... ... .. ... .. 311
6.2.2 Assessing the Valuesof aand b . . . . . . ... ... ... 313
6.2.3 Why the Beta Density Function? . . . . ... .. ... .. 315
6.3 Computing a Probability Interval . . . . . ... ... ... .... 319
6.4 Learning Parameters in a Bayesian Network . . . . . . ... ... 323
6.4.1 Urn Examples . . .. ... ... .. ... .. ... ..., 323
6.4.2 Augmented Bayesian Networks . . . . . ... .. ... .. 331
6.4.3 Learning Using an Augmented Bayesian Network . . . . . 336
6.4.4 A Problem with Updating; Using an Equivalent Sample
Size . .o 348
6.5 Learning with Missing Data Items . . . . ... ... . ... ... 357
6.5.1 Data Items Missing at Random . . . . . ... ... .. .. 358
6.5.2 Data Items Missing Not at Random . . . ... ... ... 363
6.6 Variances in Computed Relative Frequencies. . . . . . .. . . .. 364
6.6.1 A Simple Variance Determination . . . .. ... .. ... 364
6.6.2 The Variance and Equivalent Sample Size . . . . . . . .. 366
6.6.3 Computing Variances in Larger Networks . . . ... . .. 372
6.6.4 When Do Variances Become Large? . . ... .... ... 373
7 More Parameter Learning 381
7.1 Multinomial Variables . . . . ... ... ... ... L. 381
7.1.1 Learning a Single Parameter . . . . ... ... ... ... 381
7.1.2  More on the Dirichlet Density Function . . . ... .. .. 388
7.1.3 Computing Probability Intervals and Regions . . . . . . . 389

7.1.4 Learning Parameters in a Bayesian Network . . . . . . . . 392



vi

CONTENTS

7.1.5 Learning with Missing Data Items . . . ... ... .. .. 398
7.1.6  Variances in Computed Relative Frequencies . . . . . .. 398
7.2 Continuous Variables . . . . . .. .. ... L. 398
7.2.1 Normally Distributed Variable . . .. . ... ... ... .. 399
7.2.2  Multivariate Normally Distributed Variables . . . .. .. 413
7.2.3 Gaussian Bayesian Networks . . . .. .. .. ... .. .. 425
Bayesian Structure Learning 441
8.1 Learning Structure: Discrete Variables . . . . . . .. ... .. .. 441
8.1.1 Schema for Learning Structure . . . . . ... ... . ... 442
8.1.2 Procedure for Learning Structure . . . . . .. ... .. .. 445
8.1.3 Learning From a Mixture of Observational and Experi-
mental Data. . . . ... ... L oo 449
8.1.4 Complexity of Structure Learning . . . . .. ... .. .. 450
8.2 Model Averaging . . . . . . ... o 451
8.3 Learning Structure with Missing Data . . . . ... ... ... .. 452
8.3.1 Monte Carlo Methods . . . ... ... ... ..... ... 453
8.3.2 Large-Sample Approximations . . .. ... ... .. ... 462
8.4 Probabilistic Model Selection . . . . .. ... .. ... ... ... 468
8.4.1 Probabilistic Models . . . . ... ... ... ... ... 468
8.4.2 The Model Selection Problem . . . . . .. ... ... ... 472
8.4.3 Using the Bayesian Scoring Criterion for Model Selection 473
8.5 Hidden Variable DAG Models . . . . .. ... ... ........ 476
8.5.1 Models Containing More Conditional Independencies than
DAG Models . . .. ... . 477
8.5.2  Models Containing the Same Conditional Independencies
as DAG Models . . . . ... ... 479
8.5.3 Dimension of Hidden Variable DAG Models . . . . . . .. 484
8.5.4 Number of Models and Hidden Variables. . . . . . .. .. 486
8.5.5 Efficient Model Scoring . . . . . ... ... L. 487
8.6 Learning Structure: Continuous Variables . . . . . .. ... ... 491
8.6.1 The Density Functionof D . . . . . . . ... ... .. .. 491
8.6.2 The Density function of D Given a DAG pattern . . . . . 495
8.7 Learning Dynamic Bayesian Networks . . . . . ... ... . ... 505
Approximate Bayesian Structure Learning 511
9.1 Approximate Model Selection . . . . .. ... ... ... ..... 511
9.1.1 Algorithms that Search over DAGs . . . . .. ... .. .. 513
9.1.2 Algorithms that Search over DAG Patterns . . . . . . .. 518
9.1.3 An Algorithm Assuming Missing Data or Hidden Variables529
9.2 Approximate Model Averaging . . ... ... ... .. .. ..., 531
9.2.1 A Model Averaging Example . . . . ... ... ... ... 532

9.2.2 Approximate Model Averaging Using MCMC . . . . . .. 533



CONTENTS vii

10 Constraint-Based Learning 541
10.1 Algorithms Assuming Faithfulness . . . . ... ... .. ... .. 542
10.1.1 Simple Examples . . . . .. ... ... oL 542

10.1.2 Algorithms for Determining DAG patterns . . . . . . .. 545

10.1.3 Determining if a Set Admits a Faithful DAG Representation552

10.1.4 Application to Probability . . . . . ... .. ... ... .. 560

10.2 Assuming Only Embedded Faithfulness . . .. ... . ... ... 561
10.2.1 Inducing Chains . . . . . . ... .. ... ... .. 562

10.2.2 A Basic Algorithm . . . . . ... . ... ... ... .. 568

10.2.3 Application to Probability . . . . . ... .. ... ... .. 590

10.2.4 Application to Learning Causal Influences' . . ... . .. 591

10.3 Obtaining the d-separations . . . . . .. .. ... ... ... ... 599
10.3.1 Discrete Bayesian Networks . . . . ... . ... ... ... 600

10.3.2 Gaussian Bayesian Networks . . . . .. ... . ... ... 603

10.4 Relationship to Human Reasoning . . . . ... ... .. .. ... 604
10.4.1 Background Theory . . .. ... . ... ... ... ... 604

10.4.2 A Statistical Notion of Causality . . . . ... . ... ... 606

11 More Structure Learning 617
11.1 Comparing the Methods . . . . . . . ... ... ... . ... ... 617
11.1.1 A Simple Example . . . . . ... ... oL, 618

11.1.2 Learning College Attendance Influences . . . ... .. .. 620

11.1.3 Conclusions . . . . . . .. ... o 623

11.2 Data Compression Scoring Criteria . . . . . .. ... .. ... .. 624
11.3 Parallel Learning of Bayesian Networks . . . . ... . ... ... 624
114 Examples . . . . .. ..o 624
11.4.1 Structure Learning . . . . . . . . . ... ... 625

11.4.2 Inferring Causal Relationships . . . .. ... . ... ... 633

IV  Applications 647
12 Applications 649
12.1 Applications Based on Bayesian Networks . . . . .. . ... ... 649
12.2 Beyond Bayesian networks . . . . . ... ..o o000 655
Bibliography 657
Index 686

I The relationships in the examples in this section are largely fictitious.



viii CONTENTS

/..-.I( K “ﬁ%y w;,ﬂ\

!f \ B
'.,H I ( v ) Q Er“; i

"'R 5&% )) precedes | % X] l.ﬂlli"E?

|'

i —_'-FF..
_—..____:_ e
.::., f’q'h- S BT i
o e [T
] ! ﬁi:'n;j' 'l, the w10 breakl] o
Mgﬂ;) \\\"_‘-\-\. o



Preface

Bayesian networks are graphical structures for representing the probabilistic
relationships among a large number of variables and doing probabilistic inference
with those variables. During the 1980’s, a good deal of related research was done
on developing Bayesian networks (belief networks, causal networks, influence
diagrams), algorithms for performing inference with them, and applications that
used them. However, the work was scattered throughout research articles. My
purpose in writing the 1990 text Probabilistic Reasoning in Expert Systems was
to unify this research and establish a textbook and reference for the field which
has come to be known as ‘Bayesian networks.” The 1990’s saw the emergence
of excellent algorithms for learning Bayesian networks from data. However,
by 2000 there still seemed to be no accessible source for ‘learning Bayesian
networks.” Similar to my purpose a decade ago, the goal of this text is to
provide such a source.

In order to make this text a complete introduction to Bayesian networks,
I discuss methods for doing inference in Bayesian networks and influence di-
agrams. However, there is no effort to be exhaustive in this discussion. For
example, I give the details of only two algorithms for exact inference with dis-
crete variables, namely Pearl’s message passing algorithm and D’Ambrosio and
Li’s symbolic probabilistic inference algorithm. It may seem odd that I present
Pearl’s algorithm, since it is one of the oldest. I have two reasons for doing
this: 1) Pearl’s algorithm corresponds to a model of human causal reasoning,
which is discussed in this text; and 2) Pearl’s algorithm extends readily to an
algorithm for doing inference with continuous variables, which is also discussed
in this text.

The content of the text is as follows. Chapters 1 and 2 cover basics. Specifi-
cally, Chapter 1 provides an introduction to Bayesian networks; and Chapter 2
discusses further relationships between DAGs and probability distributions such
as d-separation, the faithfulness condition, and the minimality condition. Chap-
ters 3-5 concern inference. Chapter 3 covers Pearl’s message-passing algorithm,
D’Ambrosio and Li’s symbolic probabilistic inference, and the relationship of
Pearl’s algorithm to human causal reasoning. Chapter 4 shows an algorithm for
doing inference with continuous variable, an approximate inference algorithm,
and finally an algorithm for abductive inference (finding the most probable
explanation). Chapter 5 discusses influence diagrams, which are Bayesian net-
works augmented with decision nodes and a value node, and dynamic Bayesian

ix
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networks and influence diagrams. Chapters 6-10 address learning. Chapters
6 and 7 concern parameter learning. Since the notation for these learning al-
gorithm is somewhat arduous, I introduce the algorithms by discussing binary
variables in Chapter 6. I then generalize to multinomial variables in Chapter 7.
Furthermore, in Chapter 7 I discuss learning parameters when the variables are
continuous. Chapters 8, 9, and 10 concern structure learning. Chapter 8 shows
the Bayesian method for learning structure in the cases of both discrete and
continuous variables, while Chapter 9 discusses the constraint-based method
for learning structure. Chapter 10 compares the Bayesian and constraint-based
methods, and it presents several real-world examples of learning Bayesian net-
works. The text ends by referencing applications of Bayesian networks in Chap-
ter 11.

This is a text on learning Bayesian networks; it is not a text on artificial
intelligence, expert systems, or decision analysis. However, since these are fields
in which Bayesian networks find application, they emerge frequently throughout
the text. Indeed, I have used the manuscript for this text in my course on expert
systems at Northeastern Illinois University. In one semester, I have found that
I can cover the core of the following chapters: 1, 2, 3, 5, 6, 7, 8, and 9.

I would like to thank those researchers who have provided valuable correc-
tions, comments, and dialog concerning the material in this text. They in-
clude Bruce D’Ambrosio, David Maxwell Chickering, Gregory Cooper, Tom
Dean, Carl Entemann, John Erickson, Finn Jensen, Clark Glymour, Piotr
Gmytrasiewicz, David Heckerman, Xia Jiang, James Kenevan, Henry Kyburg,
Kathryn Blackmond Laskey, Don Labudde, David Madigan, Christopher Meek,
Paul-André Monney, Scott Morris, Peter Norvig, Judea Pearl, Richard Scheines,
Marco Valtorta, Alex Wolpert, and Sandy Zabell. I thank Sue Coyle for helping
me draw the cartoon containing the robots.
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Chapter 1

Introduction to Bayesian
Networks

Consider the situation where one feature of an entity has a direct influence on
another feature of that entity. For example, the presence or absence of a disease
in a human being has a direct influence on whether a test for that disease turns
out positive or negative. For decades, Bayes’ theorem has been used to perform
probabilistic inference in this situation. In the current example, we would use
that theorem to compute the conditional probability of an individual having a
disease when a test for the disease came back positive. Consider next the situ-
ation where several features are related through inference chains. For example,
whether or not an individual has a history of smoking has a direct influence
both on whether or not that individual has bronchitis and on whether or not
that individual has lung cancer. In turn, the presence or absence of each of these
diseases has a direct influence on whether or not the individual experiences fa-
tigue. Also, the presence or absence of lung cancer has a direct influence on
whether or not a chest X-ray is positive. In this situation, we would want to do
probabilistic inference involving features that are not related via a direct influ-
ence. We would want to determine, for example, the conditional probabilities
both of bronchitis and of lung cancer when it is known an individual smokes, is
fatigued, and has a positive chest X-ray. Yet bronchitis has no direct influence
(indeed no influence at all) on whether a chest X-ray is positive. Therefore,
these conditional probabilities cannot be computed using a simple application
of Bayes’ theorem. There is a straightforward algorithm for computing them,
but the probability values it requires are not ordinarily accessible; furthermore,
the algorithm has exponential space and time complexity.

Bayesian networks were developed to address these difficulties. By exploiting
conditional independencies entailed by influence chains, we are able to represent
a large instance in a Bayesian network using little space, and we are often able
to perform probabilistic inference among the features in an acceptable amount
of time. In addition, the graphical nature of Bayesian networks gives us a much
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P(h1) = .2

P(b1]hl) = .25
P(b1]h2) = .05

P(I1|h1) = .003
P(I1]h2) = .00005

P(f1]b1,11) = .75 P(cl|l1) = .6
P(f1]b1,12) = .10 P(c1|i2) = .02
P(f1|b2,11) = .5

P(f1|b2,I2) = .05

Figure 1.1: A Bayesian nework.

better intuitive grasp of the relationships among the features.

Figure 1.1 shows a Bayesian network representing the probabilistic relation-
ships among the features just discussed. The values of the features in that
network represent the following:

Feature | Value | When the Feature Takes this Value
H hl There is a history of smoking
h2 There is no history of smoking
B b1 Bronchitis is present
b2 Bronchitis is absent
L 11 Lung cancer is present
12 Lung cancer is absent
F f1 Fatigue is present
f2 | Fatigue is absent
C cl Chest X-ray is positive
c2 Chest X-ray is negative

This Bayesian network is discussed in Example 1.32 in Section 1.3.3 after we
provide the theory of Bayesian networks. Presently, we only use it to illustrate
the nature and use of Bayesian networks. First, in this Bayesian network (called
a causal network) the edges represent direct influences. For example, there is
an edge from H to L because a history of smoking has a direct influence on the
presence of lung cancer, and there is an edge from L to C because the presence
of lung cancer has a direct influence on the result of a chest X-ray. There is no
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edge from H to C because a history of smoking has an influence on the result
of a chest X-ray only through its influence on the presence of lung cancer. One
way to construct Bayesian networks is by creating edges that represent direct
influences as done here; however, there are other ways. Second, the probabilities
in the network are the conditional probabilities of the values of each feature given
every combination of values of the feature’s parents in the network, except in the
case of roots they are prior probabilities. Third, probabilistic inference among
the features can be accomplished using the Bayesian network. For example, we
can compute the conditional probabilities both of bronchitis and of lung cancer
when it is known an individual smokes, is fatigued, and has a positive chest
X-ray. This Bayesian network is discussed again in Chapter 3 when we develop
algorithms that do this inference.

The focus of this text is on learning Bayesian networks from data. For
example, given we had values of the five features just discussed (smoking his-
tory, bronchitis, lung cancer, fatigue, and chest X-ray) for a large number of
individuals, the learning algorithms we develop might construct the Bayesian
network in Figure 1.1. However, to make it a complete introduction to Bayesian
networks, it does include a brief overview of methods for doing inference in
Bayesian networks and using Bayesian networks to make decisions. Chapters 1
and 2 cover properties of Bayesian networks which we need in order to discuss
both inference and learning. Chapters 3-5 concern methods for doing inference
in Bayesian networks. Methods for learning Bayesian networks from data are
discussed in Chapters 6-11. A number of successful experts systems (systems
which make the judgements of an expert) have been developed which are based
on Bayesian networks. Furthermore, Bayesian networks have been used to learn
causal influences from data. Chapter 12 references some of these real-world ap-
plications. To see the usefulness of Bayesian networks, you may wish to review
that chapter before proceeding.

This chapter introduces Bayesian networks. Section 1.1 reviews basic con-
cepts in probability. Next, Section 1.2 discusses Bayesian inference and illus-
trates the classical way of using Bayes’ theorem when there are only two fea-
tures. Section 1.3 shows the problem in representing large instances and intro-
duces Bayesian networks as a solution to this problem. Finally, we discuss how
Bayesian networks can often be constructed using causal edges.

1.1 Basics of Probability Theory

The concept of probability has a rich and diversified history that includes many
different philosophical approaches. Notable among these approaches include the
notions of probability as a ratio, as a relative frequency, and as a degree of belief.
Next we review the probability calculus and, via examples, illustrate these three
approaches and how they are related.
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1.1.1 Probability Functions and Spaces

In 1933 A.N. Kolmogorov developed the set-theoretic definition of probability,
which serves as a mathematical foundation for all applications of probability.
We start by providing that definition.

Probability theory has to do with experiments that have a set of distinct
outcomes. Examples of such experiments include drawing the top card from a
deck of 52 cards with the 52 outcomes being the 52 different faces of the cards;
flipping a two-sided coin with the two outcomes being ‘heads’ and ‘tails’; picking
a person from a population and determining whether the person is a smoker
with the two outcomes being ‘smoker’ and ‘non-smoker’; picking a person from
a population and determining whether the person has lung cancer with the
two outcomes being ‘having lung cancer’ and ‘not having lung cancer’; after
identifying 5 levels of serum calcium, picking a person from a population and
determining the individual’s serum calcium level with the 5 outcomes being
each of the 5 levels; picking a person from a population and determining the
individual’s serum calcium level with the infinite number of outcomes being
the continuum of possible calcium levels. The last two experiments illustrate
two points. First, the experiment is not well-defined until we identify a set of
outcomes. The same act (picking a person and measuring that person’s serum
calcium level) can be associated with many different experiments, depending on
what we consider a distinct outcome. Second, the set of outcomes can be infinite.
Once an experiment is well-defined, the collection of all outcomes is called the
sample space. Mathematically, a sample space is a set and the outcomes are
the elements of the set. To keep this review simple, we restrict ourselves to finite
sample spaces in what follows (You should consult a mathematical probability
text such as [Ash, 1970] for a discussion of infinite sample spaces.). In the case
of a finite sample space, every subset of the sample space is called an event. A
subset containing exactly one element is called an elementary event. Once a
sample space is identified, a probability function is defined as follows:

Definition 1.1 Suppose we have a sample space ) containing n distinct ele-
ments. That is,

Q={e1,ea,...en}.

A function that assigns a real number P(E) to each event E C € is called
a probability function on the set of subsets of Q if it satisfies the following
conditions:

1. 0<P{e}) <1 for1<i<n.
2. P({er}) + P({e2}) +...+ P({en}) = L.
3. For each event E = {e;,, €y, ...¢; } that is not an elementary event,

P(E) = P({es}) + P({er}) +... + P({ew })-

The pair (€2, P) is called a probability space.
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We often just say P is a probability function on € rather than saying on the
set of subsets of 2.

Intuition for probability functions comes from considering games of chance
as the following example illustrates.

Example 1.1 Let the experiment be drawing the top card from a deck of 52
cards. Then Q contains the faces of the 52 cards, and using the principle of
indifference, we assign P({e}) = 1/52 for each e € Q. Therefore, if we let kh
and ks stand for the king of hearts and king of spades respectively, P({kh}) =
1/52, P({ks}) = 1/52, and P({kh,ks}) = P({kh}) + P({ks}) = 1/26.

The principle of indifference (a term popularized by J.M. Keynes in 1921)
says elementary events are to be considered equiprobable if we have no reason
to expect or prefer one over the other. According to this principle, when there
are n elementary events the probability of each of them is the ratio 1/n. This
is the way we often assign probabilities in games of chance, and a probability
so assigned is called a ratio.

The following example shows a probability that cannot be computed using
the principle of indifference.

Example 1.2 Suppose we toss a thumbtack and consider as outcomes the two
ways it could land. It could land on its head, which we will call ‘heads’, or
it could land with the edge of the head and the end of the point touching the
ground, which we will call ‘tails’. Due to the lack of symmetry in a thumbtack,
we would not assign a probability of 1/2 to each of these events. So how can
we compute the probability? This experiment can be repeated many times. In
1919 Richard von Mises developed the relative frequency approach to probability
which says that, if an experiment can be repeated many times, the probability of
any one of the outcomes is the limit, as the number of trials approach infinity,
of the ratio of the number of occurrences of that outcome to the total number of
trials. For example, if m is the number of trials,
P({heads}) = lim #heads.
m— o0 m

So, if we tossed the thumbtack 10,000 times and it landed heads 3373 times, we
would estimate the probability of heads to be about .3373.

Probabilities obtained using the approach in the previous example are called
relative frequencies. According to this approach, the probability obtained is
not a property of any one of the trials, but rather it is a property of the entire
sequence of trials. How are these probabilities related to ratios? Intuitively,
we would expect if, for example, we repeatedly shuffled a deck of cards and
drew the top card, the ace of spades would come up about one out of every 52
times. In 1946 J. E. Kerrich conducted many such experiments using games of
chance in which the principle of indifference seemed to apply (e.g. drawing a
card from a deck). His results indicated that the relative frequency does appear
to approach a limit and that limit is the ratio.
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The next example illustrates a probability that cannot be obtained either
with ratios or with relative frequencies.

Example 1.3 If you were going to bet on an upcoming basketball game between
the Chicago Bulls and the Detroit Pistons, you would want to ascertain how
probable it was that the Bulls would win. This probability is certainly not a
ratio, and it is not a relative frequency because the game cannot be repeated
many times under the exact same conditions (Actually, with your knowledge
about the conditions the same.). Rather the probability only represents your
belief concerning the Bulls chances of winning. Such a probability is called a
degree of belief or subjective probability. There are a number of ways
for ascertaining such probabilities. One of the most popular methods is the
following, which was suggested by D. V. Lindley in 1985. This method says an
individual should liken the uncertain outcome to a game of chance by considering
an urn containing white and black balls. The individual should determine for
what fraction of white balls the individual would be indifferent between receiving
a small prize if the uncertain outcome happened (or turned out to be true) and
receiving the same small prize if a white ball was drawn from the urn. That
fraction is the individual’s probability of the outcome. Such a probability can be
constructed using binary cuts. If, for example, you were indifferent when the
fraction was .75, for you P({bullswin}) = .75. If I were indifferent when the
fraction was .6, for me P({bullswin}) = .6. Neither of us is right or wrong.
Subjective probabilities are unlike ratios and relative frequencies in that they do
not have objective values upon which we all must agree. Indeed, that is why they
are called subjective.

Neapolitan [1996] discusses the construction of subjective probabilities fur-
ther. In this text, by probability we ordinarily mean a degree of belief. When
we are able to compute ratios or relative frequencies, the probabilities obtained
agree with most individuals’ beliefs. For example, most individuals would assign
a subjective probability of 1/13 to the top card being an ace because they would
be indifferent between receiving a small prize if it were the ace and receiving
that same small prize if a white ball were drawn from an urn containing one
white ball out of 13 total balls.

The following example shows a subjective probability more relevant to ap-
plications of Bayesian networks.

Example 1.4 After examining a patient and seeing the result of the patient’s
chest X-ray, Dr. Gloviak decides the probability that the patient has lung cancer
is .9. This probability is Dr. Gloviak’s subjective probability of that outcome.
Although a physician may use estimates of relative frequencies (such as the
fraction of times individuals with lung cancer have positive chest X-rays) and
experience diagnosing many similar patients to arrive at the probability, it is
still assessed subjectively. If asked, Dr. Gloviak may state that her subjective
probability is her estimate of the relative frequency with which patients, who
have these exact same symptoms, have lung cancer. However, there is no reason
to believe her subjective judgement will converge, as she continues to diagnose
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patients with these exact same symptoms, to the actual relative frequency with
which they have lung cancer.

It is straightforward to prove the following theorem concerning probability
spaces.

Theorem 1.1 Let (2, P) be a probability space. Then
1. P(Q)=1.
2.0<P(E)<1 for every E C Q.
3. For E and F C Q such that ENF = &,
P(EUF) = P(E) + P(F).

Proof. The proof is left as an exercise.

The conditions in this theorem were labeled the axioms of probability
theory by A.N. Kolmogorov in 1933. When Condition (3) is replaced by in-
finitely countable additivity, these conditions are used to define a probability
space in mathematical probability texts.

Example 1.5 Suppose we draw the top card from a deck of cards. Denote by
Queen the set containing the 4 queens and by King the set containing the 4 kings.
Then

P(Queen U King) = P(Queen) + P(King) =1/13+1/13 =2/13

because Queen N King = @. Next denote by Spade the set containing the 13
spades. The sets Queen and Spade are not disjoint; so their probabilities are not
additive. However, it is not hard to prove that, in general,

P(EUF) = P(E) + P(F) — P(ENF).
So

P(QueenUSpade) = P(Queen) + P(Spade) — P(Queen N Spade)
1 1 1 4

T BT1 TR B

1.1.2 Conditional Probability and Independence

We have yet to discuss one of the most important concepts in probability theory,
namely conditional probability. We do that next.

Definition 1.2 Let E and F be events such that P(F) # 0. Then the condi-
tional probability of E given F, denoted P(E|F), is given by

P(ENF)
P(F)

P(E|F) =
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The initial intuition for conditional probability comes from considering prob-
abilities that are ratios. In the case of ratios, P(E|F), as defined above, is the
fraction of items in F that are also in E. We show this as follows. Let n be the
number of items in the sample space, ng be the number of items in F, and ngr
be the number of items in ENF. Then

P(EQF) . nEF/n _ MEF

PF)  nefn  ne

which is the fraction of items in F that are also in E. As far as meaning, P(E|F)
means the probability of E occurring given that we know F has occurred.

Example 1.6 Again consider drawing the top card from a deck of cards, let
Queen be the set of the 4 queens, RoyalCard be the set of the 12 royal cards, and
Spade be the set of the 13 spades. Then

1
P(Queen) = 'E
P(Queen NRoyalCard) 1/13 1
P(Queen|RoyalCard) = == @ = iCard) ~ ~ 3/13 3

Queen NSpade)  1/52 1
P(Spade) 14 137

P(Queen|Spade) = P

Notice in the previous example that P(Queen|Spade) = P(Queen). This
means that finding out the card is a spade does not make it more or less probable
that it is a queen. That is, the knowledge of whether it is a spade is irrelevant
to whether it is a queen. We say that the two events are independent in this
case, which is formalized in the following definition.

Definition 1.3 Two events E and F are independent if one of the following
hold:

1. P(EJF) = P(E) and P(E) #0, P(F) #0.
2. P(E)=0 or P(F)=0.

Notice that the definition states that the two events are independent even
though it is based on the conditional probability of E given F. The reason is
that independence is symmetric. That is, if P(E) # 0 and P(F) # 0, then
P(E|F) = P(E) if and only if P(F|E) = P(F). It is straightforward to prove that
E and F are independent if and only if P(ENF) = P(E)P(F).

The following example illustrates an extension of the notion of independence.

Example 1.7 Let E = {kh,ks,qh}, F = {kh,kc,qh}, G = {kh,ks, ke, kd},
where kh means the king of hearts, ks means the king of spades, etc. Then

P(E) = 5—32
2
PEF) = 3
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P(EIG) =

DO N
[N}

P(E|IFNG)

So E and F are not independent, but they are independent once we condition on

G.

In the previous example, E and F are said to be conditionally independent
given G. Conditional independence is very important in Bayesian networks and
will be discussed much more in the sections that follow. Presently, we have the
definition that follows and another example.

Definition 1.4 Two events E and F are conditionally independent given G
if P(G) # 0 and one of the following holds:

1. P(EFNG) = P(E|G)  and  P(E|G) # 0, P(F|G) # 0.
2. P(E|G) =0 or P(F|G) = 0.

Another example of conditional independence follows.

Example 1.8 Let Q be the set of all objects in Figure 1.2. Suppose we assign
a probability of 1/13 to each object, and let Black be the set of all black objects,
White be the set of all white objects, Square be the set of all square objects, and
One be the set of all objects containing a 1°. We then have

P(One) 1—53
3
P(One|Square) 3
1
P(One|Black) = g =3
2 1
P(One|Square N Black) = 6~ 3
2 1
P(One|White) = 173
1
P(One|Square N White) = 5

So One and Square are not independent, but they are conditionally independent
given Black and given White.

Next we discuss a very useful rule involving conditional probabilities. Sup-
pose we have n events Ei,Es,...E, such that E; NE; = @ for ¢ # j and
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Figure 1.2: Containing a ‘1’ and being a square are not independent, but they
are conditionally independent given the object is black and given it is white.

E;, UE; U...UE, = Q. Such events are called mutually exclusive and
exhaustive. Then the law of total probability says for any other event F,

n

P(F)=> P(FNE,). (1.1)

i=1

If P(E;) # 0, then P(FNE;) = P(F|E;)P(E;). Therefore, if P(E;) # 0 for all ¢,
the law is often applied in the following form:

n

P(F) = P(F|E;) P(E)). (1.2)

i=1

It is straightforward to derive both the axioms of probability theory and
the rule for conditional probability when probabilities are ratios. However,
they can also be derived in the relative frequency and subjectivistic frameworks
(See [Neapolitan, 1990].). These derivations make the use of probability theory
compelling for handling uncertainty.

1.1.3 Bayes’ Theorem

For decades conditional probabilities of events of interest have been computed
from known probabilities using Bayes’ theorem. We develop that theorem next.

Theorem 1.2 (Bayes) Given two events E and F such that P(E) # 0 and
P(F) # 0, we have
P(F|E)P(E)

PEIF) = =55

(1.3)

Furthermore, given n mutually exclusive and exhaustive events E1,Es, ... E,
such that P(E;) # 0 for all i, we have for 1 <i <mn,

P(F|E:)P(E:)

PEIR) = BEE)PE) T P(FIED)P(Es) + -~ P(FIEDP(E,)

(1.4)
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Proof. To obtain Equality 1.3, we first use the definition of conditional proba-

bility as follows:

P(ENF)
P(F)

P(FNE)

P(E[F) = 5

and P(F|E) =
Next we multiply each of these equalities by the denominator on its right side to
show that

P(E[F)P(F) = P(F|E)P(E)
because they both equal P(ENF). Finally, we divide this last equality by P(F)
to obtain our result.

To obtain Equality 1.4, we place the expression for F, obtained using the rule
of total probability (Equality 1.2), in the denominator of Equality 1.3.

Both of the formulas in the preceding theorem are called Bayes’ theorem
because they were originally developed by Thomas Bayes (published in 1763).
The first enables us to compute P(E|F) if we know P(F|E), P(E), and P(F), while
the second enables us to compute P(E;|F) if we know P(F|E;) and P(E;) for
1 < j < n. Computing a conditional probability using either of these formulas
is called Bayesian inference. An example of Bayesian inference follows:

Example 1.9 Let Q be the set of all objects in Figure 1.2, and assign each
object a probability of 1/13. Let One be the set of all objects containing a 1, Two
be the set of all objects containing a 2, and Black be the set of all black objects.
Then according to Bayes’ Theorem,
P(Black|One) P(One)

P(Black|One) P(One) + P(Black|Two)P(Two)

G311
O+ EE) 3

which is the same value we get by computing P(One|Black) directly.

P(One|Black)

The previous example is not a very exciting application of Bayes’ Theorem
as we can just as easily compute P(One|Black) directly. Section 1.2 discusses
useful applications of Bayes’ Theorem.

1.1.4 Random Variables and Joint Probability Distribu-
tions

We have one final concept to discuss in this overview, namely that of a random
variable. The definition shown here is based on the set-theoretic definition of
probability given in Section 1.1.1. In Section 1.2.2 we provide an alternative
definition which is more pertinent to the way random variables are used in
practice.

Definition 1.5 Given a probability space (2, P), a random variable X is a
function on .
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That is, a random variable assigns a unique value to each element (outcome)
in the sample space. The set of values random variable X can assume is called
the space of X. A random variable is said to be discrete if its space is finite
or countable. In general, we develop our theory assuming the random variables
are discrete. Examples follow.

Example 1.10 Let Q contain all outcomes of a throw of a pair of siz-sided
dice, and let P assign 1/36 to each outcome. Then  is the following set of
ordered pairs:

Q={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),...(6,5),(6,6)}.

Let the random variable X assign the sum of each ordered pair to that pair, and
let the random wvariable Y assign ‘odd’ to each pair of odd numbers and ‘even’
to a pair if at least one number in that pair is an even number. The following
table shows some of the values of X and Y :

e X(e) | Y(e)
2
3
3

odd
even

even

(6,6) | 12 | even

The space of X is{2,3,4,5,6,7,8,9,10,11,12}, and that of Y is {odd, even}.

For a random variable X, we use X = x to denote the set of all elements
e € Q that X maps to the value of x. That is,

X =x represents the event  {e such that X (e) = z}.

Note the difference between X and x. Small x denotes any element in the space
of X, while X is a function.

Example 1.11 Let Q , P, and X be as in Example 1.10. Then

X=3 represents the event  {(1,2),(2,1)} and

1

P(X=3)=—.

( )= 15

It is not hard to see that a random variable induces a probability function

on its space. That is, if we define Px({z}) = P(X = z), then Px is such a
probability function.

Example 1.12 Let Q contain all outcomes of a throw of a single die, let P
assign 1/6 to each outcome, and let Z assign ‘even’ to each even number and
‘odd’ to each odd number. Then

Py ({even}) = P(Z = even) = P({2,4,6}) = %
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Py({odd}) = P(Z = odd) = P({1,3,5}) = é

We rarely refer to Py ({x}). Rather we only reference the original probability
function P, and we call P(X = z) the probability distribution of the random
variable X. For brevity, we often just say ‘distribution’ instead of ‘probability
distribution’. Furthermore, we often use x alone to represent the event X = x,
and so we write P(z) instead of P(X = x) . We refer to P(x) as ‘the probability
of z’.

Let Q, P, and X be as in Example 1.10. Then if z = 3,

B
18"
Given two random variables X and Y, defined on the same sample space €2,

we use X = z,Y =y to denote the set of all elements e € € that are mapped
both by X to x and by Y to y. That is,

X =ua,Y =y represents the event
{e such that X (e) = 2} N {e such that Y(e) = y}.
Example 1.13 Let Q, P, X, and Y be as in Example 1.10. Then
X =4,Y =odd represents the event  {(1,3),(3,1)}, and
P(X =4,Y = odd) = 1/18.

P(x) = P(X =) =

Clearly, two random variables induce a probability function on the Cartesian
product of their spaces. As is the case for a single random variable, we rarely
refer to this probability function. Rather we reference the original probability
function. That is, we refer to P(X = z,Y = y), and we call this the joint
probability distribution of X and Y. If A = {X,Y}, we also call this the
joint probability distribution of A. Furthermore, we often just say ‘joint
distribution’ or ‘probability distribution’.

For brevity, we often use x,y to represent the event X = x,Y = y, and
so we write P(x,y) instead of P(X = z,Y = y). This concept extends in a
straightforward way to three or more random variables. For example, P(X =
x,Y = y,Z = z) is the joint probability distribution function of the variables
X, Y, and Z, and we often write P(x,y, z).

Example 1.14 Let Q, P, X, and Y be as in Example 1.10. Then if x = 4 and
Yy = odd,
Plz,y)=P(X =z,Y =y)=1/18.

If, for example, we let A = {X,Y} and a = {z, y}, we use
A=a to represent X=uzY =y,

and we often write P(a) instead of P(A = a). The same notation extends to
the representation of three or more random variables. For consistency, we set
P(o = @) = 1, where @ is the empty set of random variables. Note that if &
is the empty set of events, P(&) = 0.
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Example 1.15 Let Q, P, X, and Y be as in Example 1.10. If A = {X,Y},
a=A{z,y}, x =4, and y = odd,

PA=a)=P(X =u2,Y =y)=1/18.

This notation entails that if we have, for example, two sets of random vari-
ables A = {X,Y} and B = {Z, W}, then

B=b represents X=z,Y=yZ=z2W=uw.

Given a joint probability distribution, the law of total probability (Equality
1.1) implies the probability distribution of any one of the random variables
can be obtained by summing over all values of the other variables. It is left
as an exercise to show this. For example, suppose we have a joint probability
distribution P(X = z,Y = y). Then

P(X =z)=) P(X =Y =y),

where Zy means the sum as y goes through all values of Y. The probability
distribution P(X = z) is called the marginal probability distribution of X
because it is obtained using a process similar to adding across a row or column in
a table of numbers. This concept also extends in a straightforward way to three
or more random variables. For example, if we have a joint distribution P(X =
x,Y =y,Z =2z of X,Y,and Z, the marginal distribution P(X = z,Y = y) of
X and Y is obtained by summing over all values of Z. If A = {X, Y}, we also
call this the marginal probability distribution of A.

Example 1.16 Let Q, P, X, and Y be as in Example 1.10. Then

P(X=4) = Y P(X=4Y =y)

1
P(X:4,Y:odd)+P(X:4,Y:even):—8+—:—.

The following example reviews the concepts covered so far concerning ran-
dom variables:

Example 1.17 Let Q be a set of 12 individuals, and let P assign 1/12 to each
individual. Suppose the sexes, heights, and wages of the individuals are as fol-
lows:
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Case | Sex | Height (inches) | Wage ($)
1 female 64 30, 000
2 female 64 30, 000
3 female 64 40,000
4 female 64 40,000
5 female 68 30,000
6 female 68 40,000
7 male 64 40, 000
8 male 64 50, 000
9 male 68 40, 000
10 male 68 50, 000
11 male 70 40, 000
12 male 70 50, 000

Let the random variables S, H and W respectively assign the sex, height and
wage of an indwvidual to that individual. Then the distributions of the three
variables are as follows (Recall that, for example, P(s) represents P(S = s).):

s P(s) h | P(h) w P(w)
female | 1/2 64 | 1/2 30,000 | 1/4
male | 1/2 68 | 1/3 40,000 | 1/2
70| 1/6 50,000 | 1/4

The joint distribution of S and H is as follows:

s h | P(s,h)
female | 64 1/3
female | 68 1/6
female | 70 0

male | 64 1/6
male | 68 1/6
male | 70 1/6

The following table also shows the joint distribution of S and H and illustrates
that the individual distributions can be obtained by summing the joint distribu-
tion over all values of the other variable:

h| 64 68 70 Distribution of S
s
female 1/3 1/6 0 1/2
male 1/6 1/6 1/6 1/2
Distribution of H 1/2 1/3 1/6

The table that follows shows the first few values in the joint distribution of S,
H, and W. There are 18 values in all, of which many are 0.
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s h w P(s,h,w)
female | 64 | 30,000 1/6
female | 64 | 40,000 1/6
female | 64 | 50,000 0
female | 68 | 30,000 1/12

We have the following definition:

Definition 1.6 Suppose we have a probability space (2, P), and two sets A and
B containing random variables defined on 2. Then the sets A and B are said to
be independent if, for all values of the variables in the sets a and b, the events
A =a and B = b are independent. That is, either P(a) =0 or P(b) =0 or
P(alb) = P(a).
When this is the case, we write
IP (A; B)a

where Ip stands for independent in P.

Example 1.18 Let Q be the set of all cards in an ordinary deck, and let P
assign 1/52 to each card. Define random variables as follows:

Variable | Value | Outcomes Mapped to this Value
R rl All royal cards
r2 All nonroyal cards
T t1 All tens and jacks
t2 All cards that are neither tens nor jacks
S sl All spades
s2 All nonspades

Then we maintain the sets {R, T} and {S} are independent. That is,

To show this, we need show for all values of v, t, and s that
P(r,t|s) = P(r,t).

(Note that it we do not show brackets to denote sets in our probabilistic expres-
ston because in such an expression a set represents the members of the set. See
the discussion following Example 1.14.) The following table shows this is the
case:



1.1. BASICS OF PROBABILITY THEORY 19

s | r |t | P(rtls) P(r,t)

s1|rl | ¢l 1/13 | 4/52=1/13
sl | rl| 2 2/13 | 8/52=2/13
sl | r2]| ¢l 1/13 | 4/52=1/13
sl|r2| e 9/13 | 36/52 = 9/13
s2 | rl | t1| 3/39=1/13| 4/52=1/13
s2 | rl|t2] 6/39=2/13| 8/52=2/13
s2|r2 | t1| 3/39=1/13| 4/52=1/13
s2 | r2 | 2] 27/390 =9/13 | 36/52 = 9/13

Definition 1.7 Suppose we have a probability space (2, P), and three sets A,
B, and C containing random variable defined on ). Then the sets A and B are
said to be conditionally independent given the set C if, for all values of
the variables in the sets a, b,and c, whenever P(c) # 0, the events A = a and
B = b are conditionally independent given the event C = c. That is, either
P(alc) =0 or P(blc) =0 or

P(alb,c) = P(alc).
When this is the case, we write
Ip(A,B|C).
Example 1.19 Let Q be the set of all objects in Figure 1.2, and let P assign

1/13 to each object. Define random variables S (for shape), V' (for value), and
C (for color) as follows:

Variable | Value | Outcomes Mapped to this Value
\% vl All objects containing a ‘1’
v2 | All objects containing a 2’
S sl All square objects
52 All round objects
C cl All black objects
2 All white objects

Then we maintain that {V'} and {S} are conditionally independent given {C'}.
That 1is,

Ip({VEASH{CY).
To show this, we need show for all values of v, s, and ¢ that
P(v|s, c) = P(v]e).

The results in Example 1.8 show P(vl|sl,cl) = P(vl|cl) and P(vl|sl,c2) =
P(v1|c2). The table that follows shows the equality holds for the other values of
the variables too:
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c| s | v | Plsc) P(vlc)

cl | sl |l |2/6=1/3|3/9=1/3
cl | sl|v2]4/6=2/3|6/9=2/3
cl| 82| w1 1/3 | 3/9=1/3
cl | 2| v2 2/3 | 6/9 =2/3
2| sl | vl 1/2 | 2/4=1/2
2| sl | v2 1/2 | 2/4=1/2
2| s2 | vl 1/2 | 2/4=1/2
2| 52| v2 1/2 | 2/4=1/2

For the sake of brevity, we sometimes only say ‘independent’ rather than
‘conditionally independent’. Furthermore, when a set contains only one item,
we often drop the set notation and terminology. For example, in the preceding
example, we might say V' and S are independent given C' and write Ip(V, S|C).

Finally, we have the chain rule for random variables, which says that given
n random variables X, Xo,...X,,, defined on the same sample space €2,

.:Bl) s P($2|$1)P($1)

P(x1,22,...2n) = P(xp|Tn_1,Tn_2,..

whenever P(z1, 2, .. .x,) # 0. It is straightforward to prove this rule using the
rule for conditional probability.

1.2 Bayesian Inference

We use Bayes’ Theorem when we are not able to determine the conditional
probability of interest directly, but we are able to determine the probabilities
on the right in Equality 1.3. You may wonder why we wouldn’t be able to
compute the conditional probability of interest directly from the sample space.
The reason is that in these applications the probability space is not usually
developed in the order outlined in Section 1.1. That is, we do not identify a
sample space, determine probabilities of elementary events, determine random
variables, and then compute values in joint probability distributions. Instead, we
identify random variables directly, and we determine probabilistic relationships
among the random variables. The conditional probabilities of interest are often
not the ones we are able to judge directly. We discuss next the meaning of
random variables and probabilities in Bayesian applications and how they are
identified directly. After that, we show how a joint probability distribution can
be determined without first specifying a sample space. Finally, we show a useful
application of Bayes’ Theorem.

1.2.1 Random Variables and Probabilities in Bayesian Ap-
plications
Although the definition of a random variable (Definition 1.5) given in Section

1.1.4 is mathematically elegant and in theory pertains to all applications of
probability, it is not readily apparent how it applies to applications involving
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Bayesian inference. In this subsection and the next we develop an alternative
definition that does.

When doing Bayesian inference, there is some entity which has features,
the states of which we wish to determine, but which we cannot determine for
certain. So we settle for determining how likely it is that a particular feature is
in a particular state. The entity might be a single system or a set of systems.
An example of a single system is the introduction of an economically beneficial
chemical which might be carcinogenic. We would want to determine the relative
risk of the chemical versus its benefits. An example of a set of entities is a set
of patients with similar diseases and symptoms. In this case, we would want to
diagnose diseases based on symptoms.

In these applications, a random variable represents some feature of the entity
being modeled, and we are uncertain as to the values of this feature for the
particular entity. So we develop probabilistic relationships among the variables.
When there is a set of entities, we assume the entities in the set all have the same
probabilistic relationships concerning the variables used in the model. When
this is not the case, our Bayesian analysis is not applicable. In the case of the
chemical introduction, features may include the amount of human exposure and
the carcinogenic potential. If these are our features of interest, we identify the
random variables HumanExposure and CarcinogenicPotential (For simplicity,
our illustrations include only a few variables. An actual application ordinarily
includes many more than this.). In the case of a set of patients, features of
interest might include whether or not a disease such as lung cancer is present,
whether or not manifestations of diseases such as a chest X-ray are present,
and whether or not causes of diseases such as smoking are present. Given these
features, we would identify the random variables ChestXray, LungCancer,
and SmokingHistory. After identifying the random variables, we distinguish a
set of mutually exclusive and exhaustive values for each of them. The possible
values of a random variable are the different states that the feature can take.
For example, the state of LungCancer could be present or absent, the state of
ChestXray could be positive or negative, and the state of SmokingHistory
could be yes or no. For simplicity, we have only distinguished two possible
values for each of these random variables. However, in general they could have
any number of possible values or they could even be continuous. For example,
we might distinguish 5 different levels of smoking history (one pack or more
for at least 10 years, two packs or more for at least 10 years, three packs or
more for at lest ten years, etc.). The specification of the random variables and
their values not only must be precise enough to satisfy the requirements of the
particular situation being modeled, but it also must be sufficiently precise to
pass the clarity test, which was developed by Howard in 1988. That test
is as follows: Imagine a clairvoyant who knows precisely the current state of
the world (or future state if the model concerns events in the future). Would
the clairvoyant be able to determine unequivocally the value of the random
variable? For example, in the case of the chemical introduction, if we give
HumanFExposure the values low and high, the clarity test is not passed because
we do not know what constitutes high or low. However, if we define high as
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when the average (over all individuals), of the individual daily average skin
contact, exceeds 6 grams of material, the clarity test is passed because the
clairvoyant can answer precisely whether the contact exceeds that. In the case
of a medical application, if we give SmokingHistory only the values yes and
no, the clarity test is not passed because we do not know whether yes means
smoking cigarettes, cigars, or something else, and we have not specified how
long smoking must have occurred for the value to be yes. On the other hand, if
we say yes means the patient has smoked one or more packs of cigarettes every
day during the past 10 years, the clarity test is passed.

After distinguishing the possible values of the random variables (i.e. their
spaces), we judge the probabilities of the random variables having their values.
However, in general we do not always determine prior probabilities; nor do we de-
termine values in a joint probability distribution of the random variables. Rather
we ascertain probabilities, concerning relationships among random variables,
that are accessible to us. For example, we might determine the prior probability
P(LungCancer = present), and the conditional probabilities P(ChestXray =
positive| LungCancer = present), P(ChestXray = positive| LungCancer =
absent), P(LungCancer = present| SmokingHistory = yes), and finally
P(LungCancer = present|SmokingHistory = no). We would obtain these
probabilities either from a physician or from data or from both. Thinking in
terms of relative frequencies, P(LungCancer = present|SmokingHistory =
yes) can be estimated by observing individuals with a smoking history, and de-
termining what fraction of these have lung cancer. A physician is used to judging
such a probability by observing patients with a smoking history. On the other
hand, one does not readily judge values in a joint probability distribution such as
P(LungCancer = present, ChestXray = positive, Smoking History = yes). If
this is not apparent, just think of the situation in which there are 100 or more
random variables (which there are in some applications) in the joint probability
distribution. We can obtain data and think in terms of probabilistic relation-
ships among a few random variables at a time; we do not identify the joint
probabilities of several events.

As to the nature of these probabilities, consider first the introduction of the
toxic chemical. The probabilities of the values of CarcinogenicPotential will
be based on data involving this chemical and similar ones. However, this is
certainly not a repeatable experiment like a coin toss, and therefore the prob-
abilities are not relative frequencies. They are subjective probabilities based
on a careful analysis of the situation. As to the medical application involv-
ing a set of entities, we often obtain the probabilities from estimates of rel-
ative frequencies involving entities in the set. For example, we might obtain
P(ChestXray = positive| LungCancer = present) by observing 1000 patients
with lung cancer and determining what fraction have positive chest X-rays.
However, as will be illustrated in Section 1.2.3, when we do Bayesian inference
using these probabilities, we are computing the probability of a specific individ-
ual being in some state, which means it is a subjective probability. Recall from
Section 1.1.1 that a relative frequency is not a property of any one of the trials
(patients), but rather it is a property of the entire sequence of trials. You may
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feel that we are splitting hairs. Namely, you may argue the following: “This
subjective probability regarding a specific patient is obtained from a relative
frequency and therefore has the same value as it. We are simply calling it a
subjective probability rather than a relative frequency.” But even this is not
the case. Even if the probabilities used to do Bayesian inference are obtained
from frequency data, they are only estimates of the actual relative frequencies.
So they are subjective probabilities obtained from estimates of relative frequen-
cies; they are not relative frequencies. When we manipulate them using Bayes’
theorem, the resultant probability is therefore also only a subjective probability.

Once we judge the probabilities for a given application, we can often ob-
tain values in a joint probability distribution of the random variables. Theo-
rem 1.5 in Section 1.3.3 obtains a way to do this when there are many vari-
ables. Presently, we illustrate the case of two variables. Suppose we only
identify the random variables LungCancer and ChestXray, and we judge the
prior probability P(LungCancer = present), and the conditional probabili-
ties P(ChestXray = positive| LungCancer = present) and P(ChestXray =
positive| LungCancer = absent). Probabilities of values in a joint probability
distribution can be obtained from these probabilities using the rule for condi-
tional probability as follows:

P(present, positive) = P(positive|present)P(present)

P(present, negative) = P(negative|present)P(present)
P(absent, positive) = P(positive|absent) P(absent)
P(absent, negative) = P(negative|absent) P(absent).

Note that we used our abbreviated notation. We see then that at the outset we
identify random variables and their probabilistic relationships, and values in a
joint probability distribution can then often be obtained from the probabilities
relating the random variables. So what is the sample space? We can think of the
sample space as simply being the Cartesian product of the sets of all possible
values of the random variables. For example, consider again the case where we
only identify the random variables LungCancer and ChestXray, and ascertain
probability values in a joint distribution as illustrated above. We can define the
following sample space:

Q =
{(present, positive), (present, negative), (absent, positive), (absent, negative)}.

We can consider each random variable a function on this space that maps
each tuple into the value of the random variable in the tuple. For example,
LungCancer would map (present, positive) and (present,negative) each into
present. We then assign each elementary event the probability of its correspond-
ing event in the joint distribution. For example, we assign

P({(present, positive)}) = P(LungCancer = present, ChestXray = positive).
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It is not hard to show that this does yield a probability function on 2 and
that the initially assessed prior probabilities and conditional probabilities are
the probabilities they notationally represent in this probability space (This is a
special case of Theorem 1.5.).

Since random variables are actually identified first and only implicitly be-
come functions on an implicit sample space, it seems we could develop the con-
cept of a joint probability distribution without the explicit notion of a sample
space. Indeed, we do this next. Following this development, we give a theorem
showing that any such joint probability distribution is a joint probability dis-
tribution of the random variables with the variables considered as functions on
an implicit sample space. Definition 1.1 (of a probability function) and Defi-
nition 1.5 (of a random variable) can therefore be considered the fundamental
definitions for probability theory because they pertains both to applications
where sample spaces are directly identified and ones where random variables
are directly identified.

1.2.2 A Definition of Random Variables and Joint Proba-
bility Distributions for Bayesian Inference

For the purpose of modeling the types of problems discussed in the previous
subsection, we can define a random variable X as a symbol representing any
one of a set of values, called the space of X. For simplicity, we will assume
the space of X is countable, but the theory extends naturally to the case where
it is not. For example, we could identify the random variable LungCancer as
having the space {present,absent}. We use the notation X = x as a primitive
which is used in probability expressions. That is, X = z is not defined in terms
of anything else. For example, in application LungCancer = present means the
entity being modeled has lung cancer, but mathematically it is simply a primi-
tive which is used in probability expressions. Given this definition and primitive,
we have the following direct definition of a joint probability distribution:

Definition 1.8 Let a set of n random variables V = {X1, Xa,... X, } be speci-
fied such that each X; has a countably infinite space. A function, that assigns a
real number P (X, = x1,Xo = xo9,...X,, = x,) to every combination of values
of the x;’s such that the value of x; is chosen from the space of X;, is called a
joint probability distribution of the random variables in V if it satisfies the
following conditions:

1. For every combination of values of the x;’s,

OSP(Xl:$1,X2:$2,...Xn:$n)Sl.

2. We have
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The motation ), . . means the sum as the variables x1,...x, go
through all possible values in their corresponding spaces.

Note that a joint probability distribution, obtained by defining random vari-
ables as functions on a sample space, is one way to create a joint probability
distribution that satisfies this definition. However, there are other ways as the
following example illustrates:

Example 1.20 LetV = {X,Y}, let X andY have spaces {x1,22}' and {y1,y2}
respectively, and let the following values be specified:

P(X=x1)=.2 PY=yl)=.3
P(X =22)=28 PY =y2)=.T.

Next define a joint probability distribution of X and Y as follows:

P(X=2z1,Y =yl)=P(X =z21)P(Y =yl) = (.2)(.3) = .06
P(X=21,Y =y2)=P(X =z21)P(Y =y2) = (.2)(.7) = .14
P(X =22Y =yl)=P(X =22)P(Y =yl) = (.8)(.3) =.24

P(X =22Y =4y2) = P(X =22)P(Y = y2) = (.8)(.7) = .56.

Since the values sum to 1, this is another way of specifying a joint probability
distribution according to Definition 1.8. This is how we would specify the joint
distribution if we felt X and'Y were independent.

Notice that our original specifications, P(X = i) and P(Y = yi), nota-
tionally look like marginal distributions of the joint distribution developed in
Example 1.20. However, Definition 1.8 only defines a joint probability distri-
bution P; it does not mention anything about marginal distributions. So the
initially specified values do not represent marginal distributions of our joint dis-
tribution P according to that definition alone. The following theorem enables
us to consider them marginal distributions in the classical sense, and therefore
justifies our notation.

Theorem 1.3 Let a set of random variables V be given and let a joint proba-
bility distribution of the variables in V be specified according to Definition 1.8.
Let Q) be the Cartesian product of the sets of all possible values of the random
variables. Assign probabilities to elementary events in Q0 as follows:

p({((ﬁl,i?g, ZI?n)}) = P(Xl = ZI)l,XQ = T9, Xn = ZI)n)

These assignments result in a probability function on 2 according to Definition
1.1. Furthermore, if we let X; denote a function (random variable in the clas-
sical sense) on this sample space that maps each tuple in € to the value of x; in

L'We use subscripted variables X; to denote different random variables. So we do not
subcript to denote a value of a random variable. Rather we write the index next to the
variable.
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that tuple, then the joint probability distribution of the X, s is the same as the
originally specified joint probability distribution.

Proof. The proof is left as an exercise.

Example 1.21 Suppose we directly specify a joint probability distribution of X
and Y, each with space {x1,22} and {yl,y2} respectively, as done in Example
1.20. That is, we specify the following probabilities:

P(X =z1,Y =yl)
P(X =z1,Y =y2)
P(X =22,Y =yl)
P(X =22,Y =y2)

Next we let Q = {(z1,y1), (21, 42), (22,y1), (22,y2)}, and we assign

P({(zi,yj)}) = P(X = xi,Y = yj).

Then we let X and Y be functions on Q defined by the following tables:

v |y | X((x,9) x|y | Y((x,9)
zl | yl zl zl | yl yl
zl | y2 zl zl | y2 y2
2 | yl 2 2 | yl yl
2 | y2 2 2 | y2 y2

Theorem 1.3 says the joint probability distribution of these random variables is
the same as the originally specified joint probability distribution. Let’s illustrate
this:
P(X =z1,Y =y1) = P{(x1,y1), (x1,52)} N {(z1,y1), (22,y1)})
= P({(z1,91)})
= P(X =z1,Y =yl).

Due to Theorem 1.3, we need no postulates for probabilities of combinations
of primitives not addressed by Definition 1.8. Furthermore, we need no new
definition of conditional probability for joint distributions created according
to that definition. We can just postulate that both obtain values according
to the set theoretic definition of a random variable. For example, consider
Example 1.20. Due to Theorem 1.3, P(X = z1) is simply a value in a marginal
distribution of the joint probability distribution. So its value is computed as
follows:

P(X=2x1) = P(X=2z1,Y =yl)+P(X =x1,Y =32)
= PX=z1,Y=yl)+ P(X =21Y =92)
= PX=z1)P(Y =yl)+ P(X =z1)P(Y =y2)
= PX =z)[PY =yl)+ P(Y =42)]
P(X ==z1)[1] = P(X = 1),
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which is the originally specified value. This result is a special case of Theorem
1.5.

Note that the specified probability values are not by necessity equal to the
probabilities they notationally represent in the marginal probability distribu-
tion. However, since we used the rule for independence to derive the joint
probability distribution from them, they are in fact equal to those values. For
example, if we had defined P(X = z1,Y = yl) = P(X = 22)P(Y = y1), this
would not be the case. Of course we would not do this. In practice, all specified
values are always the probabilities they notationally represent in the resultant
probability space (€2, p). Since this is the case, we will no longer show carats
over P or X when referring to the probability function in this space or a random
variable on the space.

Example 1.22 LetV ={X,Y}, let X andY have spaces {x1,22} and {y1,y2}
respectively, and let the following values be specified:

P(X=zl)=.2 PY =yl|X =21)=.3
P(X =22)=.38 PY =y2|X =21)=.7

PY =yl X =22)= .4
P(Y = y2|X = 22) = .6.

Next define a joint probability distribution of X andY as follows:
P(X=z1,Y=yl) =P =yl|X =z1)P(X =21) =(.3)(.2) = .06

P(X=21,Y=9y2)=PY =y2|X =z1)P(X =21) = (.7)(.2) = .14

T
P(X =22,Y =yl) = P(Y =yl|X = 22)P(X =22) = (.4)(.8) = .32

P(X =22,Y =y2)=P(Y =y2|X =22)P(X = 22) = (.6)(.8) = .48.

Since the values sum to 1, this is another way of specifying a joint probability
distribution according to Definition 1.8. As we shall see in Example 1.23 in the
following subsection, this is the way they are specified in simple applications of
Bayes’ Theorem.

In the remainder of this text, we will create joint probability distributions
using Definition 1.8. Before closing, we note that this definition pertains to any
application in which we model naturally occurring phenomena by identifying
random variables directly, which includes most applications of statistics.

1.2.3 A Classical Example of Bayesian Inference

The following examples illustrates how Bayes’ theorem has traditionally been
applied to compute the probability of an event of interest from known proba-
bilities.
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Example 1.23 Suppose Joe has a routine diagnostic chest X-ray required of
all new employees at Colonial Bank, and the X-ray comes back positive for lung
cancer. Joe then becomes certain he has lung cancer and panics. But should
he? Without knowing the accuracy of the test, Joe really has no way of knowing
how probable it is that he has lung cancer. When he discovers the test is not
absolutely conclusive, he decides to investigate its accuracy and he learns that it
has a false negative rate of .4 and a false positive rate of .02. We represent this
accuracy as follows. First we define these random variables:

Variable Value When the Variable Takes This Value
Test positive | X-ray is positive

negative | X-ray is negative

LungCancer | present | Lung cancer is present

absent | Lung cancer is absent

We then have these conditional probabilities:

P(Test = positive| LungCancer = present) = .6

P(Test = positive| LungCancer = absent) = .02.

Given these probabilities, Joe feels a little better. However, he then realizes he
still does not know how probable it is that he has lung cancer. That is, the prob-
ability of Joe having lung cancer is P(LungCancer = present|Test = positive),
and this is not one of the probabilities listed above. Joe finally recalls Bayes’
theorem and realizes he needs yet another probability to determine the probability
of his having lung cancer. That probability is P(LungCancer = present), which
is the probability of his having lung cancer before any information on the test
results were obtained. Even though this probability is not based on any informa-
tion concerning the test results, it is based on some information. Specifically, it
is based on all information (relevant to lung cancer) known about Joe before he
took the test. The only information about Joe, before he took the test, was that
he was one of a class of employees who took the test routinely required of new
employees. So, when he learns only 1 out of every 1000 new employees has lung
cancer, he assigns .001 to P(LungCancer = present). He then employs Bayes’
theorem as follows (Note that we again use our abbreviated notation):

P(present|positive)

P(positive|present) P(present)
P(positive|present) P(present) + P(positive|absent) P(absent)
(.6)(.001)

(.6)(.001) + (.02)(.999)
= 029

So Joe now feels that he probability of his having lung cancer is only about .03,
and he relaxes a bit while waiting for the results of further testing.
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A probability like P(LungCancer = present) is called a prior probability
because, in a particular model, it is the probability of some event prior to
updating the probability of that event, within the framework of that model,
using new information. Do not mistakenly think it means a probability prior to
any information. A probability like P(LungCancer = present|Test = positive)
is called a posterior probability because it is the probability of an event
after its prior probability has been updated, within the framework of some
model, based on new information. The following example illustrates how prior
probabilities can change depending on the situation we are modeling.

Example 1.24 Now suppose Sam is having the same diagnostic chest X-ray
as Joe. However, he is having the X-ray because he has worked in the mines
for 20 years, and his employers became concerned when they learned that about
10% of all such workers develop lung cancer after many years in the mines.
Sam also tests positive. What is the probability he has lung cancer? Based on
the information known about Sam before he took the test, we assign a prior
probability of .1 to Sam having lung cancer. Again using Bayes’ theorem, we
conclude that P(LungCancer = present|Test = positive) = .769 for Sam. Poor
Sam concludes it is quite likely that he has lung cancer.

The previous two examples illustrate that a probability value is relative to
one’s information about an event; it is not a property of the event itself. Both
Joe and Sam either do or do not have lung cancer. It could be that Joe has
it and Sam does not. However, based on our information, our degree of belief
(probability) that Sam has it is much greater than our degree of belief that Joe
has it. When we obtain more information relative to the event (e.g. whether
Joe smokes or has a family history of cancer), the probability will change.

1.3 Large Instances / Bayesian Networks

Bayesian inference is fairly simple when it involves only two related variables as
in Example 1.23. However, it becomes much more complex when we want to
do inference with many related variable. We address this problem next. After
discussing the difficulties inherent in representing large instances and in doing
inference when there are a large number of variables, we describe a relation-
ship, called the Markov condition, between graphs and probability distributions.
Then we introduce Bayesian networks, which exploit the Markov condition in
order to represent large instances efficiently.

1.3.1 The Difficulties Inherent in Large Instances

Recall the situation, discussed at the beginning of this chapter, where several
features (variables) are related through inference chains. We introduced the
following example of this situation: Whether or not an individual has a history
of smoking has a direct influence both on whether or not that individual has
bronchitis and on whether or not that individual has lung cancer. In turn, the
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presence or absence of each of these features has a direct influence on whether
or not the individual experiences fatigue. Also, the presence or absence of
lung cancer has a direct influence on whether or not a chest X-ray is positive.
We noted that, in this situation, we would want to do probabilistic inference
involving features that are not related via a direct influence. We would want to
determine, for example, the conditional probabilities both of having bronchitis
and of having lung cancer when it is known an individual smokes, is fatigued,
and has a positive chest X-ray. Yet bronchitis has no influence on whether a
chest X-ray is positive. Therefore, this conditional probability cannot readily
be computed using a simple application of Bayes’ theorem. So how could we
compute it? Next we develop a straightforward algorithm for doing so, but we
will show it has little practical value. First we give some notation. As done
previously, we will denote random variables using capital letters such as X and
use the corresponding lower case letters z1, 22, etc. to denote the values in the
space of X. In the current example, we define the random variables that follow:

Variable | Value | When the Variable Takes this Value
H hl There is a history of smoking
h2 There is no history of smoking
B b1 Bronchitis is present
b2 Bronchitis is absent
L 11 Lung cancer is present
12 Lung cancer is absent
F f1 Fatigue is present
f2 | Fatigue is absent
C cl Chest X-ray is positive
2 Chest X-ray is negative

Note that we presented this same table at the beginning of this chapter, but we
called the random variables ‘features’. We had not yet defined random variable

at that point; so we used the informal term feature. If we knew the joint
probability distribution of these five variables, we could compute the conditional
probability of an individual having bronchitis given the individual smokes, is
fatigued, and has a positive chest X-ray as follows:

P(b1, b1, f1,¢1,1
peLn e PON LN

P(b1h1, f1,c1) = P(hL, f1,cl) S P(bhl, f1,cl,l)’ (1.5)
b,l

where ), , means the sum as b and I/ go through all their possible values. There
are a number of problems here. First, as noted previously, the values in the joint
probability distribution are ordinarily not readily accessible. Second, there are
an exponential number of terms in the sums in Equality 1.5. That is, there
are 22 terms in the sum in the denominator, and, if there were 100 variables
in the application, there would be 2°7 terms in that sum. So, in the case
of a large instance, even if we had some means for eliciting the values in the
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joint probability distribution, using Equality 1.5 simply requires determining
too many such values and doing too many calculations with them. We see that
this method has no practical value when the instance is large.

Bayesian networks address the problems of 1) representing the joint proba-
bility distribution of a large number of random variables; and 2) doing Bayesian
inference with these variables. Before introducing them in Section 1.3.3, we
need to discuss the Markov condition.

1.3.2 The Markov Condition

First let’s review some graph theory. Recall that a directed graph is a pair
(V,E), where V is a finite, nonempty set whose elements are called nodes (or
vertices), and E is a set of ordered pairs of distinct elements of V. Elements of
E are called edges (or arcs), and if (X,Y) € E, we say there is an edge from
X to Y and that X and Y are each incident to the edge. If there is an edge
from X to Y or from Y to X, we say X and Y are adjacent. Suppose we have
a set of nodes [X7, Xo,... X}|, where k > 2, such (X;_1,X;) € Efor 2 <i < k.
We call the set of edges connecting the k& nodes a path from X; to Xj. The
nodes Xo,... X1 are called interior nodes on path [Xi, Xo,... X;]. The
subpath of path [Xi, Xs,... Xj] from X; to X, is the path [X;, X;41,...X]j]
where 1 < i < j < k. A directed cycle is a path from a node to itself. A
simple path is a path containing no subpaths which are directed cycles. A
directed graph G is called a directed acyclic graph (DAG) if it contains no
directed cycles. Given a DAG G = (V,E) and nodes X and Y in V, Y is called
a parent of X if there is an edge from Y to X, Y is called a descendent of
X and X is called an ancestor of Y if there is a path from X to Y, and Y is
called a nondescendent of X if Y is not a descendent of X. Note that in this
text X is not considered a descendent of X because we require k > 2 in the
definition of a path. Some texts say there is an empty path from X to X.
We can now state the following definition:

Definition 1.9 Suppose we have a joint probability distribution P of the ran-
dom variables in some setV and a DAG G = (V,E). We say that (G, P) satisfies
the Markov condition if for each variable X € V, {X} is conditionally in-
dependent of the set of all its nondescendents given the set of all its parents.
Using the notation established in Section 1.1.4, this means if we denote the sets
of parents and nondescendents of X by PAx and NDx respectively, then

Ip({X},NDx|PAx).

When (G, P) satisfies the Markov condition, we say G and P satisfy the
Markov condition with each other.

If X is a root, then its parent set PAx is empty. So in this case the Markov
condition means {X} is independent of NDx. That is, Ip({X},NDx). It is
not hard to show that Ip({X},NDx|PAx) implies Ip({X},B|PAx) for any
B C NDy. It is left as an exercise to do this. Notice that PAxC NDy. So
we could define the Markov condition by saying that X must be conditionally
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Figure 1.3: The probability distribution in Example 1.25 satisfies the Markov
condition only for the DAGs in (a), (b), and (c).

independent of NDy — PAx given PAx. However, it is standard to define it as
above. When discussing the Markov condition relative to a particular distri-
bution and DAG (as in the following examples), we just show the conditional
independence of X and NDx — PAx.

Example 1.25 Let § be the set of objects in Figure 1.2, and let P assign a
probability of 1/13 to each object. Let random variables V, S, and C be as
defined as in Example 1.19. That is, they are defined as follows:

Variable | Value | Outcomes Mapped to this Value
Vv vl All objects containing a ‘1’
v2 All objects containing a 2’
S sl All square objects
52 All round objects
C cl All black objects
c2 All white objects
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Figure 1.4: A DAG illustrating the Markov condition

Then, as shown in Example 1.19, Ip({V'},{S}H{C}). Therefore, (G, P) satisfies

the Markov condition if G is the DAG in Figure 1.3 (a), (b), or (c). However,
(G, P) does not satisfy the Markov condition if G is the DAG in Figure 1.3 (d)
because Ip({V'},{S}) is not the case.

Example 1.26 Consider the DAG G in Figure 1.4. If (G, P) satisfied the
Markov condition for some probability distribution P, we would have the follow-
ing conditional independencies:

Node | PA Conditional Independency |
¢ | {L} | Ip({C},{H, B, F}[{L})

B | {H} | Ip({B}{L,C}{H})

F {B’ L} IP({F}’ {H’ C}HB’L})

L {H} | Ip({L}, {B}[{H})

Recall from Section 1.3.1 that the number of terms in a joint probability
distribution is exponential in terms of the number of variables. So, in the
case of a large instance, we could not fully describe the joint distribution by
determining each of its values directly. Herein lies one of the powers of the
Markov condition. Theorem 1.4, which follows shortly, shows if (G, P) satisfies
the Markov condition, then P equals the product of its conditional probability
distributions of all nodes given values of their parents in G, whenever these
conditional distributions exist. After proving this theorem, we discuss how this
means we often need ascertain far fewer values than if we had to determine all
values in the joint distribution directly. Before proving it, we illustrate what it
means for a joint distribution to equal the product of its conditional distributions
of all nodes given values of their parents in a DAG G. This would be the case
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for a joint probability distribution P of the variables in the DAG in Figure 1.4
if, for all values of f, ¢, b, [, and h,

P(f,c,b,1,h) = P(f|b,1)P(c|l)P(blh)P(l|h)P(h), (1.6)

whenever the conditional probabilities on the right exist. Notice that if one of
them does not exist for some combination of the values of the variables, then
P(b,l) =0 or P(l) =0 or P(h) = 0, which implies P(f,c,b,l,h) = 0 for that
combination of values. However, there are cases in which P(f,¢,b,l,h) =0 and
the conditional probabilities still exist. For example, this would be the case if
all the conditional probabilities on the right existed and P(f|b,1) = 0 for some
combination of values of f, b, and [. So Equality 1.6 must hold for all nonzero
values of the joint probability distribution plus some zero values.
We now give the theorem.

Theorem 1.4 If (G, P) satisfies the Markov condition, then P is equal to the
product of its conditional distributions of all nodes given values of their parents,
whenever these conditional distributions exist.

Proof. We prove the case where P is discrete. Order the nodes so that if Y is
a descendent of Z, then' Y follows Z in the ordering. Such an ordering is called
an ancestral ordering. Examples of such an ordering for the DAG in Figure
1.4 are [H,L,B,C,F| and [H,B,L,F,C]. Let X1,Xa,...X, be the resultant
ordering. For a given set of values of x1,xa,...x,, let pa; be the subset of
these values containing the values of X;’s parents. We need show that whenever
P(pa;) #0 for 1 <i<n,

P(zn,xpn-1,...21) = P(xy|pa,)P(xn-1|pa,_1) - P(z1]pay).

We show this using induction on the number of variables in the network. As-
sume, for some combination of values of the x;’s, that P(pa;) #0 for 1 <i <n.

INDUCTION BASE: Since PA; is empty,
P(z1) = P(z1]pay).

INDUCTION HYPOTHESIS: Suppose for this combination of values of the x;’s that
P(xi,xi1,...21) = P(xi|pa;)P(xi—1]pa;_q1) - - - P(x1|pay).
INDUCTION STEP: We need show for this combination of values of the x;’s that

P(xip1,2;, ... 1) = P(xi11|paj ) P(xs]pa;) - - - P |pay). (L.7)
There are two cases:

CASE 1: For this combination of values

P(ZI)i,ZI)i_l,...Zlil) =0. (18)
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Clearly, Equality 1.8 implies

P(l)i_;,_l, Ty .1131) =0.
Furthermore, due to Fquality 1.8 and the induction hypothesis, there is some k,
where 1 < k <4, such that P(xy|pa,) = 0. So Equality 1.7 holds.

CASE 2: For this combination of values
P(ZI)i, Ti—1y-- .1131) 7é 0.
In this case,

P(ZEZ‘_;,_l,ZIIZ‘,...ZIIl) = P(ZI)H_llilii,...ZIIl)P(ZI)Z‘,...ZI)l)
= P(xit1|pa41)P(xis ... 71)
= P($i+1|Pai+1)P($i|Pai)“‘P(x1|Pa1)-

The first equality is due to the rule for conditional probability, the second is due
to the Markov condition and the fact that Xy,...X; are all nondescendents of
Xit1, and the last is due to the induction hypothesis.

Example 1.27 Recall that the joint probability distribution in Example 1.25
satisfies the Markov condition with the DAG in Figure 1.3 (a). Therefore, owing
to Theorem 1.4,

P(v,s,c) = P(v|c)P(s|c)p(c), (1.9)

and we need only determine the conditional distributions on the right in Equality
1.9 to uniquely determine the values in the joint distribution. We illustrate that
this is the case for vl, s1, and cl:

2
P(v1,s1,cl) = P(One N Square N Black) = 'E

P(vl|cl)P(sl|el)P(cl) = P(One|Black) x P(Square|Black) x P(Black)
1 2 9 2
= SXZX-—=-—.
3 3 13 13

Figure 1.5 shows the DAG along with the conditional distributions.

The joint probability distribution in Example 1.25 also satisfies the Markov
condition with the DAGs in Figures 1.3 (b) and (c¢). Therefore, the probability
distribution in that example equals the product of the conditional distributions
for each of them. You should verify this directly.

If the DAG in Figure 1.3 (d) and some probability distribution P satisfied
the Markov condition, Theorem 1.4 would imply

P(v,s,¢c) = P(clv, s)P(v)p(s).

Such a distribution is discussed in Exercise 1.20.
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P(c1) = 9/13

P(c2) = 4/13
P(vilcl) = 1/3 P(s1lcl) = 2/3
P(v2|cl) = 2/3 P(s2|c1) = 1/3
P(vi|c2) = 1/2 P(s1lc2) = 1/2
P(v2|c2) = 1/2 P(s2|c2) = 1/2

Figure 1.5: The probability distribution discussed in Example 1.27 is equal to
the product of these conditional distributions.

Theorem 1.4 often enables us to reduce the problem of determining a huge
number of probability values to that of determining relatively few. The num-
ber of values in the joint distribution is exponential in terms of the number of
variables. However, each of these values is uniquely determined by the condi-
tional distributions (due to the theorem), and, if each node in the DAG does
not have too many children, there are not many values in these distributions.
For example, if each variable has two possible values and each node has at most
one parent, we would need to ascertain less than 2n probability values to de-
termine the conditional distributions when the DAG contains n nodes. On the
other hand, we would need to ascertain 2" — 1 values to determine the joint
probability distribution directly. In general, if each variable has two possible
values and each node has at most k parents, we need to ascertain less than 2¥n
values to determine the conditional distributions. So if k is not large, we have
a manageable number of values.

Something may seem amiss to you. Namely, in Example 1.25, we started
with an underlying sample space and probability function, specified some ran-
dom variables, and showed that if P is the probability distribution of these
variables and G is the DAG in Figure 1.3 (a), then (P,G) satisfies the Markov
condition. We can therefore apply Theorem 1.4 to conclude we need only de-
termine the conditional distributions of the variables for that DAG to find any
value in the joint distribution. We illustrated this in Example 1.27. How-
ever, as discussed in Section 1.2, in application we do not ordinarily specify
an underlying sample space and probability function from which we can com-
pute conditional distributions. Rather we identify random variables and values
in conditional distributions directly. For example, in an application involv-
ing the diagnosis of lung cancer, we identify variables like SmokingHistory,
LungCancer, and Chest Xray, and probabilities such as P(SmokingHistory =



1.3. LARGE INSTANCES / BAYESIAN NETWORKS 37

yes), P(LungCancer = present|SmokingHistory = yes), and P(ChestXray =
positive| LungCancer = present). How do we know the product of these con-
ditional distributions is a joint distribution at all, much less one satisfying the
Markov condition with some DAG? Theorem 1.4 tells us only that if we start
with a joint distribution satisfying the Markov condition with some DAG, the
values in that joint distribution will be given by the product of the condi-
tional distributions. However, we must work in reverse. We must start with
the conditional distributions and then be able to conclude the product of these
distributions is a joint distribution satisfying the Markov condition with some
DAG. The theorem that follows enables us to do just that.

Theorem 1.5 Let a DAG G be given in which each node is a random variable,
and let a discrete conditional probability distribution of each node given values of
its parents in G be specified. Then the product of these conditional distributions
yields a joint probability distribution P of the variables, and (G, P) satisfies the
Markov condition.

Proof. Order the nodes according to an ancestral ordering. Let X1, Xo,... X,
be the resultant ordering. Next define

P(x1,2,...7,) = P(zylpa,)P(z,_1lpa, ) - - P(x2|pay) P(z1]pa,),

where PA; is the set of parents of X; of in G and P(x;|pa;) is the specified
conditional probability distribution. First we show this does indeed yield a joint
probability distribution. Clearly, 0 < P(x1,x2,...x,) < 1 for all values of the
variables. Therefore, to show we have a joint distribution, Definition 1.8 and
Theorem 1.3 imply we need only show that the sum of P(xy,xa,...x,), as the
variables range through all their possible values, is equal to one. To that end,

ZZ Z ZP(ml,xQ,...xn)

= 33 S Plealpan) P@ailpa, ) - Plrzlpay) Plai]pay)
= SIS [ Plaalpay) | P@a-ilpa, 1) | Plezlpas) | Plailpay)

1 2 Tn—1

= S I Y WP@ailpa, 1) | Plaslpay) | Plailpay)

= D> (D[] P(xzlpay) | Plailpay)

= Z [1] P(x1]pa;) = 1.

Z1

It is left as an exercise to show that the specified conditional distributions are
the conditional distributions they notationally represent in the joint distribution.
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Finally, we show the Markov condition is satisfied. To do this, we need show
for 1 < k <n that whenever P(pay) # 0, if P(ndy|pa,) # 0 and P(xy|pa,) # 0
then P(xy|ndy,pay) = P(xk|pay,), where NDy is the set of nondescendents of
Xk of in G. Since PA,, C NDy, we need only show P(xy|nd,) = P(xk|pay).

First for a given k, order the nodes so that all and only nondescendents of
X precede Xy, in the ordering. Note that this ordering depends on k, whereas
the ordering in the first part of the proof does not. Clearly then

NDy = {X1, Xs,... Xs_1}.

Let
D = {Xkt1, Xpyo, ... Xn}.

In what follows, Z means the sum as the variables in di go through all

their possible values. Furthermore notation such as T means the variable has
a particular value; notation such as Adi means all variables in the set have
particular values; and notation such as pa,, means some variables in the set
may not have particular values. We have that

P&, dy)
P(Ady)

Z P(:%l,flg, . .:)ASk,ZIIk_;,_l, .. :Bn)

P(aglady) =

> Py, g, Bk, Ty )

dpU{z}
Z P(anlpa,,) -+ P(xpi1|pagy 1) P(2k|Pay) - - P(21]pay)
Z P(xnlpa,)- - P(zk|pay) P(ix—1|pay_y) - -~ P(d1]pay)

dpU{z}

P(ixlpay) - P(#1]pay) Y P(xnlpa,) - P(xks1lpaj)
= dk

P(ig1lpay_1) -~ P(#1]pa)) D> Planlpa,)- - Placlpay)

de{mk}

P(zx|pa,) [1 A

_ ( kl[l]k)[ ] _ P($k|Pak)-

In the second to last step, the sums are each equal to one for the following reason.
FEach is a sum of a product of conditional probability distributions specified for
a DAG. In the case of the numerator, that DAG is the subgraph, of our original
DAG G, consisting of the variables in Dy, and in the case of the denominator,
it is the subgraph consisting of the variables in DyU{X}}. Therefore, the fact
that each sum equals one follows from the first part of this proof.

Notice that the theorem requires that specified conditional distributions be
discrete. Often in the case of continuous distributions it still holds. For example,
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()

P(x1) =.3 P(yl|x1) = .6 P(z1llyl) = .2
P(x2) =.7 Py2|x1) = .4 P(z2lyl) = .8
P(y1|x2) =0 P(z1ly2)= .5
P(y2[x2) = 1 P(z2|x2) = .5

Figure 1.6: A DAG containing random variables, along with specified condi-
tional distributions.

it holds for the Gaussian distributions introduced in Section 4.1.3. However,
in general, it does not hold for all continuous conditional distributions. See
[Dawid and Studeny, 1999] for an example in which no joint distribution having
the specified distributions as conditionals even exists.

Example 1.28 Suppose we specify the DAG G shown in Figure 1.6, along with
the conditional distributions shown in that figure. According to Theorem 1.5,

P(x,y,z) = P(z|ly) P(y|x) P (x)
satisfies the Markov condition with G.

Note that the proof of Theorem 1.5 does not require that values in the
specified conditional distributions be nonzero. The next example shows what
can happen when we specify some zero values.

Example 1.29 Consider first the DAG and specified conditional distributions
in Figure 1.6. Because we have specified a zero conditional probability, namely
P(yl|x2), there are events in the joint distribution with zero probability. For
example,

P(22,y1, 21) = P(21]yl)P(yl|x2)P(x2) = (.2)(0)(.7) = 0.

Howewver, there is no event with zero probability that is a conditioning event in
one of the specified conditional distributions. That is, P(x1), P(x2), P(yl), and
P(y2) are all nonzero. So the specified conditional distributions all exist.

Consider next the DAG and specified conditional distributions in Figure 1.7.
We have

P(zl,y1) = P(z1,yllwl)P(wl) + P(zl,yl|w2)P(w2)
= P(zllwl)P(yllwl)P(wl) + P(x1|w2)P(yl|lw2)P(w?2)
(0)(-:8)(.1) + (.6)(0)(.9) = 0.

The event x1,yl is a conditioning event in one of the specified distributions,
namely P(zi|x1,y1), but it has zero probability, which means we can’t condition
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P(wl) =.1
Pw2)=.9
P(x1|jwl) =0 P(yljwl) =.8
P(x2wl) =1 ° ° P(y2wl) =.2
P(x1|w2) = .6 P(yllw2) =0
P(x2|w2) = .4 P(y2w2) =1
P(z1|x1,y1) =.3 P(z1|x1,y2) = .4
P(z2|x1,y1) =.7 P(z2|x1,y2) = .6
P(z1|x2,y1) = .1 P(z1|x2,y2) = .5
P(z2|x2,y1) = .9 P(z2|x2,y2) = .5

Figure 1.7: The event x1, y1 has 0 probability.

on it. This poses mo problem; it simply means we have specified some meaning-
less values, namely P(zi|xl,y1). The Markov condition is still satisfied because
P(z|lw,z,y) = P(z|z,y) whenever P(x,y) # 0 (See the definition of conditional
independence for sets of random variables in Section 1.1.4.).

1.3.3 Bayesian Networks

Let P be a joint probability distribution of the random variables in some set
V, and G = (V,E) be a DAG. We call (G, P) a Bayesian network if (G, P)
satisfies the Markov condition. Owing to Theorem 1.4, P is the product of its
conditional distributions in G, and this is the way P is always represented in
a Bayesian network. Furthermore, owing to Theorem 1.5, if we specify a DAG
G and any discrete conditional distributions (and many continuous ones), we
obtain a Bayesian network This is the way Bayesian networks are constructed
in practice. Figures 1.5, 1.6, and 1.7 all show Bayesian networks.

Example 1.30 Figure 1.8 shows a Bayesian network containing the probability
distribution discussed in Fxample 1.23.

Example 1.31 Recall the objects in 1.2 and the resultant joint probability dis-
tribution P discussed in Fxample 1.25. FExample 1.27 developed a Bayesian
network (namely the one in Figure 1.5) containing that distribution. Figure 1.9
shows another Bayesian network whose conditional distributions are obtained
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@ P(LungCancer = present) = .001

P(Test = positive|LungCancer = present) = .6
P(Test = positive|LungCancer = absent) =.02

Figure 1.8: A Bayesian network representing the probability distribution dis-
cussed in Example 1.23.

P(v1) = 5/13 P(sl) = 8/13

P(c1|vl,sl) = 2/3
P(c1|vl,s2) = 1/2
P(c1|v2,s1) = 4/5
P(c1|v2,s2) = 2/3

Figure 1.9: A Bayesian network.
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P(h1) = .2

P(b1]hl) = .25
P(b1]h2) = .05

P(I1|h1) = .003
P(I1]h2) = .00005

P(f1]b1,11) = .75 P(cl|l1) = .6
P(f1]b1,12) = .10 P(c1|i2) = .02
P(f1|b2,11) = .5

P(f1|b2,I2) = .05

Figure 1.10: A Bayesian nework.

from P. Does this Bayesian network contain P? No it does not. Since P does
not satisfy the Markov condition with the DAG in that figure, there is no reason
to suspect P would be the product of the conditional distributions in that DAG.
It is a simple matter to verify that indeed it is not. So, although the Bayesian
network in Figure 1.9 contains a probability distribution, it is not P.

Example 1.32 Recall the situation discussed at the beginning of this section
where we were concerned with the joint probability distribution of smoking his-
tory (H), bronchitis (B), lung cancer (L), fatigue (F'), and chest X-ray (C).
Figure 1.1, which appears again as Figure 1.10, shows a Bayesian network con-
taining those variables in which the conditional distributions were estimated from
actual data.

Does the Bayesian network in the previous example contain the actual rel-
ative frequency distribution of the variables? FExample 1.31 illustrates that if
we develop a Bayesian network from an arbitrary DAG and the conditionals
of a probability distribution P relative to that DAG, in general the resultant
Bayesian network does not contain P. Notice that, in Figure 1.10 we con-
structed the DAG using causal edges. For example, there is an edge from H
to L because smoking causes lung cancer. In the next section, we argue that
if we construct a DAG using causal edges we often have a DAG that satisfies
the Markov condition with the relative frequency distribution of the variables.
Given this, owing to Theorem 1.4, the relative frequency distribution of the
variables in Figure 1.10 should satisfy the Markov condition with the DAG in
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that figure. However, the situation is different than our urn example (Exam-
ples 1.25 and 1.27). Even if the values in the conditional distribution in Figure
1.10 are obtained from relative frequency data, they will only be estimates of
the actual relative frequencies. Therefore, the resultant joint distribution is a
different joint distribution than the joint relative frequency distribution of the
variables. What distribution is it? It is our joint subjective probability dis-
tribution P of the variables obtained from our beliefs concerning conditional
independencies among the variables (the structure of the DAG G) and relative
frequency data. Theorem 1.5 tells us that in many cases (G, P) satisfies the
Markov condition and is therefore a Bayesian network. Note, that if we are
correct about the conditional independencies, we will have convergence to the
actual relative frequency distribution.

1.3.4 A Large Bayesian Network

In this section, we introduced Bayesian networks and we demonstrated their
application using small textbook examples. To illustrate their practical use, we
close by briefly discussing a large-scale Bayesian network used in a system called
NasoNet.

NasoNet [Galdn et al, 2002] is a system that performs diagnosis and prog-
nosis of nasopharyngeal cancer, which is cancer concerning the nasal passages.
The Bayesian network used in NasoNet contains 15 nodes associated with tu-
mors confined to the nasopharynx, 23 nodes representing the spread of tumors
to nasopharyngeal surrounding sites, 4 nodes concerning distant metastases, 4
nodes indicating abnormal lymph nodes, 11 nodes expressing nasopharyngeal
hemorrheages or infections, and 50 nodes representing symptoms or syndromes
(combinations of symptoms). Figure 1.11 show a portion of the Bayesian net-
work. The feature shown in each node either has value present or absent.

NasoNet models the evolution of nasopharyngeal cancer in such a way that
each arc represents a causal relation between the parent and the child. For
example, in Figure 1.11 the presence of infection in the nasopharynx may cause
rhinorrhea (excessive mucous secretion from the nose). The next section dis-
cusses why constructing a DAG with causal edges should often yield a Bayesian
network.

1.4 Creating Bayesian Networks Using Causal
Edges

Given a set of random variables V, if for every X,Y € V we draw an edge
from X to Y if and only if X is a direct cause of Y relative to V, we call the
resultant DAG a causal DAG. In this section, we illustrate why we feel the
joint probability (relative frequency) distribution of the variables in a causal
DAG often satisfies the Markov condition with that DAG, which means we
can construct a Bayesian network by creating a causal DAG. Furthermore, we
explain what we mean by ‘X is a direct cause of Y relative to V’ (at least for
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Primary
vegetating tumor
on
right lateral wall

Primary infiltrating
tumor on
superior wall

Infection
in the
nasopharynx

Infiltrating tumor
spread to
anterior wall

Vegetating tumor
occupying
right nasal fossa

Infiltrating tumor
spread to
right nasal fossa

Rhinorrhea

Persistent

nasal obstruction
on the right side

Figure 1.11: Part of the Bayesian network in Nasonet.

one definition of causation). Before doing this, we first review the concept of
causation and a method for determining causal influences.

1.4.1 Ascertaining Causal Influences Using Manipulation

Some of what follows is based on a similar discussion in [Cooper, 1999]. One
dictionary definition of a cause is ‘the one, such as a person, an event, or a
condition, that is responsible for an action or a result.” Although useful, this
simple definition is certainly not the last word on the concept of causation, which
has been wrangled about philosophically for centuries (See e.g. [Eells, 1991],
[Hume, 1748], [Piaget, 1966], [Salmon, 1994], [Spirtes et al, 1993, 2000].). The
definition does, however, shed light on an operational method for identifying
causal relationships. That is, if the action of making variable X take some
value sometimes changes the value taken by variable Y, then we assume X is
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responsible for sometimes changing Y’s value, and we conclude X is a cause of
Y. More formally, we say we manipulate X when we force X to take some
value, and we say X causes Y if there is some manipulation of X that leads to a
change in the probability distribution of Y. We assume that if manipulating X
leads to a change in the probability distribution of Y, then X obtaining a value
by any means whatsoever also leads to a change in the probability distribution of
Y. So we assume causes and their effects are statistically correlated. However,
as we shall discuss soon, variables can be correlated without one causing the
other. A manipulation consists of a randomized controlled experiment (RCE)
using some specific population of entities (e.g. individuals with chest pain) in
some specific context (E.g., they currently receive no chest pain medication and
they live in a particular geographical area.). The causal relationship discovered
is then relative to this population and this context.

Let’s discuss how the manipulation proceeds. We first identify the popu-
lation of entities we wish to consider. Our random variables are features of
these entities. Next we ascertain the causal relationship we wish to investigate.
Suppose we are trying to determine if variable X is a cause of variable Y. We
then sample a number of entities from the population (See Section 4.2.1 for a
discussion of sampling.). For every entity selected, we manipulate the value of
X so that each of its possible values is given to the same number of entities (If X
is continuous, we choose the values of X according to a uniform distribution.).
After the value of X is set for a given entity, we measure the value of Y for
that entity. The more the resultant data shows a dependency between X and
Y the more the data supports that X causally influences Y. The manipulation
of X can be represented by a variable M that is external to the system being
studied. There is one value mi of M for each value xi of X, the probabilities
of all values of M are the same, and when M equals mi, X equals xi. That is,
the relationship between M and X is deterministic. The data supports that X
causally influences Y to the extent that the data indicates P(yi|mj) # P(yi|mk)
for j # k. Manipulation is actually a special kind of causal relationship that we
assume exists primordially and is within our control so that we can define and
discover other causal relationships.

An Illustration of Manipulation

We demonstrate these ideas with a comprehensive example concerning recent
headline news. The pharmaceutical company Merck had been marketing its drug
finasteride as medication for men for a medical condition. Based on anecdotal
evidence, it seemed that there was a correlation between use of the drug and
regrowth of scalp hair. Let’s assume that Merck determined such a correlation
does exist. Should they conclude finasteride causes hair regrowth and therefore
market it as a cure for baldness? Not necessarily. There are quite a few causal
explanations for the correlation of two variables. We discus these next.

Possible Causal Relationships Let I’ be a variable representing finasteride
use and G be a variable representing scalp hair growth. The actual values of F'
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O—© O—©

(@) (b)
(c) (d)
(e)

Figure 1.12: All five causal relationships could account for F' and G being
correlated.

and GG are unimportant to the present discussion. We could use either continu-
ous or discrete values. If F' caused G, then indeed they would be statistically
correlated, but this would also be the case if G caused F, or if they had some
hidden common cause H. If we again represent a causal influence by a directed
edge, Figure 1.12 shows these three possibilities plus two more. Figure 1.12 (a)
shows the conjecture that F' causes GG, which we already suspect might be the
case. However, it could be that G causes F' (Figure 1.12 (b)). You may argue
that, based on domain knowledge, this does not seem reasonable. However, in
general we do not have domain knowledge when doing a statistical analysis. So
from the correlation alone, the causal relationships in Figure 1.12 (a) and (b)
are equally reasonable. Even in this domain, G causing F seems possible. A
man may have used some other hair regrowth product such as minoxidil, which
caused him to regrow hair, became excited about the regrowth, and decided to
try other products such as finasteride which he heard might cause regrowth. As
a third possibility, it could be both that finasteride causes hair regrowth and
hair regrowth causes use of finasteride, meaning we could have a causal loop or
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feedback. Therefore, Figure 1.12 (c) is also a possibility. For example, finas-
teride may cause regrowth, and excitement about regrowth may cause use of
finasteride. A fourth possibility, shown in Figure 1.12 (d), is that F' and G have
some hidden common cause H which accounts for their statistical correlation.
For example, a man concerned about hair loss might try both finasteride and
minoxidil in his effort to regrow hair. The minoxidil may cause hair regrowth,
while the finasteride does not. In this case the man’s concern is a cause of
finasteride use and hair regrowth (indirectly through minoxidil use), while the
latter two are not causally related. A fifth possibility is that we are observing a
population in which all individuals have some (possibly hidden) effect of both
F and G. For example, suppose finasteride and apprehension about lack of
hair regrowth are both causes of hypertension?, and we happen to be observing
individuals who have hypertension Y. We say a node is instantiated when we
know its value for the entity currently being modeled. So we are saying Y is
instantiated to the same value for all entities in the population we are observing.
This situation is depicted in Figure 1.12 (e), where the cross through Y means
the variable is instantiated. Ordinarily, the instantiation of a common effect
creates a dependency between its causes because each cause explains away the
occurrence of the effect, thereby making the other cause less likely. Psycholo-
gists call this discounting. So, if this were the case, discounting would explain
the correlation between I’ and G. This type of dependency is called selection
bias. A final possibility (not depicted in Figure 1.12) is that F' and G are not
causally related at all. The most notable example of this situation is when our
entities are points in time, and our random variables are values of properties
at these different points in time. Such random variables are often correlated
without having any apparent causal connection. For example, if our population
consists of points in time, J is the Dow Jones Average at a given time, and L
is Professor Neapolitan’s hairline at a given time, then J and L are correlated.
Yet they do not seem to be causally connected. Some argue there are hidden
common causes beyond our ability to measure. We will not discuss this issue
further here. We only wish to note the difficulty with such correlations. In light
of all of the above, we see then that we cannot deduce the causal relationship
between two variables from the mere fact that they are statistically correlated.

It may not be obvious why two variables with a common cause would be
correlated. Consider the present example. Suppose H is a common cause of F'
and G and neither F' nor G caused the other. Then H and F' are correlated
because H causes I', H and G are correlated because H causes G, which im-
plies ' and G are correlated transitively through H. Here is a more detailed
explanation. For the sake of example, suppose hl is a value of H that has a
causal influence on F' taking value f1 and on G taking value gl. Then if F
had value f1, each of its causes would become more probable because one of
them should be responsible. So P(h1|f1) > P(f1). Now since the probability
of h1 has gone up, the probability of g1 would also go up because hl causes g1.

2There is no evidence that either finasteride or apprenhension about lack of hair regrowth
cause hypertension. This is only for the sake of illustration.
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P(ml)=.5" P(fljm1) = 1
P(M2)=.5%  P(f2jm1)=0
“ P(f1lm2)=0

“ P(f2lm2) = 1

Figure 1.13: A manipulation investigating whether F' causes G.

Therefore, P(gl|f1) > P(f1), which means F and G are correlated.

Merck’s Manipulation Study Since Merck could not conclude finasteride
causes hair regrowth from their mere correlation alone, they did a manipulation
study to test this conjecture. The study was done on 1,879 men aged 18 to 41
with mild to moderate hair loss of the vertex and anterior mid-scalp areas. Half
of the men were given 1 mg. of finasteride, while the other half were given 1
mg. of placebo. Let’s define variables for the study, including the manipulation
variable M:

Variable | Value | When the Variable Takes this Value
F f1 Subject takes 1 mg. of finasteride.
f2 Subject takes 1 mg. of placebo.
G gl Subject has significant hair regrowth.
e2 Subject does not have significant hair regrowth.
M ml | Subject is chosen to take 1mg of finasteride.
m2 | Subject is chosen to take 1mg of placebo.

Figure 1.13 shows the conjecture that F' causes G and the RCE used to test
this conjecture. There is an oval around the system being modeled to indicate
the manipulation comes from outside that system. The edges in that figure
represent causal influences. The RCE supports the conjecture that F' causes G
to the extent that the data support P(gl|ml) # P(g1|m2). Merck decided that
‘significant hair regrowth’ would be judged according to the opinion of indepen-
dent dermatologists. A panel of independent dermatologists evaluated photos
of the men after 24 months of treatment. The panel judged that significant
hair regrowth was demonstrated in 66 percent of men treated with finasteride
compared to 7 percent of men treated with placebo. Basing our probability on
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Figure 1.14: A causal DAG depicting that F' causes D and D causes G.

these results, we have P(g1|m1) ~ .67 and P(g1|m2) ~ .07. In a more analytical
analysis, only 17 percent of men treated with finasteride demonstrated hair loss
(defined as any decrease in hair count from baseline). In contrast, 72 percent of
the placebo group lost hair, as measured by hair count. Merck concluded that
finasteride does indeed cause hair regrowth, and on Dec. 22, 1997 announced
that the U.S. Food and Drug Administration granted marketing clearance to
Propecia(TM) (finasteride 1 mg.) for treatment of male pattern hair loss (an-
drogenetic alopecia), for use in men only. See [McClennan and Markham, 1999
for more on this.

Causal Mediaries The action of finasteride is well-known. That is, manipu-
lation experiments have shown it significantly inhibits the conversion of testos-
terone to dihydro-testosterone (DHT) (See e.g. [Cunningham et al, 1995].). So
without performing the study just discussed, Merck could assume finasteride
(F) has a causal effect on DHT level (D). DHT is believed to be the andro-
gen responsible for hair loss. Suppose we know for certain that a balding man,
whose DHT level was set to zero, would regrow hair. We could then also con-
clude DHT level (D) has a causal effect on hair growth (G). These two causal
relationships are depicted in Figure 1.14. Could Merck have used these causal
relations to conclude for certain that finasteride would cause hair regrowth and
avoid the expense of their study? No, they could not. Perhaps, a certain min-
imal level of DHT is necessary for hair loss, more than that minimal level has
no further effect on hair loss, and finasteride is not capable of lowering DHT
level below that level. That is, it may be that finasteride has a causal effect on
DHT level, DHT level has a causal effect on hair growth, and yet finasteride has
no effect on hair growth. If we identify that F' causes D and D causes G, and
F and G are probabilistically independent, we say the probability distribution
of the variables is not faithful to the DAG representing their identified causal
relationships. In general, we say (G, P) satisfies the faithfulness condition if
(G, P) satisfies the Markov condition and the only conditional independencies in
P are those entailed by the Markov condition. So, if I and G are independent,
the probability distribution does not satisfy the faithfulness condition with the
DAG in Figure 1.14 because this independence is not entailed by the Markov
condition. Faithfulness, along with its role in causal DAGs, is discussed in detail
in Chapter 2.

Notice that if the variable D was not in the DAG in Figure 1.14, and if the
probability distribution did satisfy the faithfulness condition (which we believe
based on Merck’s study), there would be an edge from F' directly into G instead
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of the directed path through D. In general, our edges always represent only the
relationships among the identified variables. It seems we can usually conceive
of intermediate, unidentified variables along each edge. Consider the following
example taken from [Spirtes et al, 1993, 2000] [p. 42].

If C is the event of striking a match, and A is the event of the match
catching on fire, and no other events are considered, then C is a
direct cause of A. If, however, we added B; the sulfur on the match
tip achieved sufficient heat to combine with the oxygen, then we
could no longer say that C' directly caused A, but rather C' directly
caused B and B directly caused A. Accordingly, we say that B is a
causal mediary between C and A if C' causes B and B causes A.

Note that, in this intuitive explanation, a variable name is used to stand also
for a value of the variable. For example, A is a variable whose value is on-fire
or not-on-fire, and A is also used to represent that the match is on fire. Clearly,
we can add more causal mediaries. For example, we could add the variable D
representing whether the match tip is abraded by a rough surface. C' would then
cause D, which would cause B, etc. We could go much further and describe
the chemical reaction that occurs when sulfur combines with oxygen. Indeed, it
seems we can conceive of a continuum of events in any causal description of a
process. We see then that the set of observable variables is observer dependent.
Apparently, an individual, given a myriad of sensory input, selectively records
discernible events and develops cause-effect relationships among them. There-
fore, rather than assuming there is a set of causally related variables out there, it
seems more appropriate to only assume that, in a given context or application,
we identify certain variables and develop a set of causal relationships among
them.

Bad Manipulation

Before discussing causation and the Markov condition, we note some cautionary
procedures of which one must be aware when performing a RCE. First, we
must be careful that we do not inadvertently disturb the system other than the
disturbance done by the manipulation variable M itself. That is, we must be
careful we do not accidentally have any other causal edges into the system being
modeled. The following is an example of this kind of bad manipulation (due to
Greg Cooper [private correspondence):

Example 1.33 Suppose we want to determine the relative effectiveness of home
treatment and hospital treatment for low-risk pneumonia patients. Consider
those patients of Dr. Welby who are randomized to home treatment, but whom
Dr. Welby normally would have admitted to the hospital. Dr. Welby may give
more instructions to such home-bound patients than he would give to the typical
home-bound patient. These instructions might influence patient outcomes. If
those instructions are not measured, then the RCE may give biased estimates of
the effect of treatment location (home or hospital) on patient outcome. Note, we
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are interested in estimating the effect of treatment location on patient outcomes,
everything else being equal. The RCE is actually telling us the effect of treatment
allocation on patient outcomes, which is not of interest here (although it could be
of interest for other reasons). The manipulation of treatment allocation is a bad
manipulation of treatment location because it not only results in a manipulation
M of treatment location, but it also has a causal effect on physicians’ other
actions such as advice given. This is an example of what some call a ‘fat hand’
manipulation, in the sense that one would like to manipulate just one variable,
but one’s hand is so fat that it ends up affecting other variables as well.

Let’s show with a DAG how this RCFE inadvertently disturbs the system be-
ing modeled other than the disturbance done by M itself. If we let L represent
treatment location, A represent treatment allocation, and M represent the ma-
nipulation of treatment location, we have these values:

Variable | Value | When the Variable Takes this Value
L Al Subject is at home
12 Subject is in hospital
A al Subject is allocated to be at home
a2 Subject is allocated to be in hospital
M ml | Subject is chosen to stay home
m2 | Subject is chosen to stay in hospital

Other variables in the system include E representing the doctor’s evaluation of
the patient, T representing the doctor’s treatments and other advice, and O rep-
resenting patient outcome. Since these variables can have more than two values
and their actual values are not important to the current discussion, we did not
show their values in the table above. Figure 1.15 shows the relationships among
the five variables. Note that A not only results in the desired manipulation, but
there is another edge from A into the system being modeled, namely the edge
into T'. This edge is our inadvertent disturbance.

In many studies (whether experimental or observational) it often is difficult,
if not impossible, to blind clinicians (and often patients) to the actions the clin-
icians have been randomized to take. Thus, a fat hand manipulation is a real
possibility. Drug studies often are an important exception; however, there are
many clinician actions we would like to study besides drug selection.

Besides fat hand manipulation, another kind of bad manipulation would be
if we could not get complete control in setting the value of the variable we
wish to manipulate. This manipulation is bad with respect to what we want to
accomplish with the manipulation.

1.4.2 Causation and the Markov Condition

Recall from the beginning of Section 1.4 we stated the following: Given a set of
variables V| if for every X,Y € V we draw an edge from X to Y if and only if X
is a direct cause of Y relative to V, we call the resultant DAG a causal DAG.
Given the manipulation definition of causation offered earlier, by ‘X being a
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Figure 1.15: The action A has a causal arc into the system other than through

M.

Figure 1.16: The causal relationships if F' had a causal influence on G other
than through D.

direct cause of Y relative to V' we mean that a manipulation of X changes the
probability distribution of Y, and that there is no subset W C V —{X, Y} such
that if we instantiate the variables in W a manipulation of X no longer changes
the probability distribution of Y. When constructing a causal DAG containing
a set of variables V, we call V ‘our set of observed variables.” Recall further from
the beginning of Section 1.4 we said we would illustrate why we feel the joint
probability (relative frequency) distribution of the variables in a causal DAG
often satisfies the Markov condition with that DAG. We do that first; then we
state the causal Markov Assumption.

Why Causal DAGs Often Satisfy the Markov Condition

Consider first the situation concerning finasteride, DHT, and hair regrowth dis-
cussed in Section 1.4.1. In this case, our set of observed variables V is {F, D, G}.
We learned that finasteride level has a causal influence on DHT level. So we
placed an edge from F' to D in Figure 1.14. We learned that DHT level has a
causal influence on hair regrowth. So we placed an edge from D to G in Figure
1.14. We suspected that the causal effect finasteride has on hair regrowth is
only through the lowering of DHT levels. So we did not place an edge from
F to G in Figure 1.14. If there was another causal path from F' to G (i.e. if
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Figure 1.17: X and Y are not independent if they have a hidden common cause
H.

F affected G by some means other than by decreasing DHT levels), we would
also place an edge from F' to G as shown in Figure 1.16. Assuming the only
causal connection between F' and G is as indicated in Fig 1.14, we would feel
that F' and G are conditionally independent given D because, once we knew
the value of D, we would have a probability distribution of G based on this
known value, and, since the value of F' cannot change the known value of D and
there is no other connection between I’ and G, it cannot change the probability
distribution of G. Manipulation experiments have substantiated this intuition.
That is, there have been experiments in which it was established that X causes
Y, Y causes Z, X and Z are not probabilistically independent, and X and Z
are conditionally independent given Y. See [Lugg et al, 1995 for an example.
In general, when all causal paths from X to Y contain at least one variable in
our set of observed variables V, X and Y do not have a common cause, there
are no causal paths from Y back to X, and we do not have selection bias, then
we feel X and Y are independent if we condition on a set of variables including
at least one variable in each of the causal paths from X to Y. Since the set of
all parents of Y is such a set, we feel the Markov condition is satisfied relative
to X and Y.

We say X and Y have a common cause if there is some variable that has
causal paths into both X and Y. If X and Y have a common cause C, there is
often a dependency between them through this common cause (But this is not
necessarily the case. See Exercise 2.34.). However, if we condition on Y’s parent
in the path from C to Y, we feel we break this dependency for the same reasons
discussed above. So, as long as all common causes are in our set of observed
variables V, we can still break the dependency between X and Y (assuming as
above there are no causal paths from Y to X) by conditioning on the set of
parents of Y, which means the Markov condition is still satisfied relative to X
and Y. A problem arises when at least one common cause is not in our set of
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observed variables V. Such a common cause is called a hidden variable. If two
variables had a hidden common cause, then there would often be a dependency
between them, which the Markov condition would identify as an independency.
For example, consider the DAG in Figure 1.17. If we only identified the variables
X, Y, and Z, and the causal relationships that X and Y each caused Z, we
would draw edges from each of X and Y to Z. The Markov condition would
entail X and Y are independent. But if X and Y had a hidden common cause
H, they would not ordinarily be independent. So, for us to assume the Markov
condition is satisfied, either no two variables in the set of observed variables V
can have a hidden common cause, or, if they do, it must have the same unknown
value for every unit in the population under consideration. When this is the
case, we say the set is causally sufficient.

Another violation of the Markov condition, similar to the failure to include a
hidden common cause, is when there is selection bias present. Recall that, in the
beginning of Section 1.4.1, we noted that if finasteride use (F') and apprehension
about lack of hair regrowth (G) are both causes of hypertension (Y), and we
happen to be observing individuals hospitalized for treatment of hypertension,
we would observe a probabilistic dependence between F' and G due to selection
bias. This situation is depicted in Figure 1.12 (e). Note that in this situation our
set of observed variables V is {F,G}. That is, Y is not observed. So if neither
F nor G caused each other and they did not have a hidden common cause, a
causal DAG containing only the two variables (i.e. one with no edges) would
still not satisfy the Markov condition with the observed probability distribution,
because the Markov condition says I’ and G are independent when indeed they
are not for this population.

Finally, we must also make certain that if X has a causal influence on Y, then
Y does not have a causal influence X. In this way we guarantee that the identi-
fied causal edges will indeed yield a DAG. Causal feedback loops (e.g. the situa-
tion identified in Figure 1.12 (c)) are discussed in [Richardson and Spirtes, 1999)].

Before closing, we note that if we mistakenly draw an edge from X to Y
in a case where X’s causal influence on Y is only through other variables in
the model, we have not done anything to thwart the Markov condition being
satisfied. For example, consider again the variables in Figure 1.14. If F’s only
influence on G was through D, we would not thwart the Markov condition by
drawing an edge from F' to GG. That is, this does not result in the structure of
the DAG entailing any conditional independencies that are not there. Indeed,
the opposite has happened. That is, the DAG fails to entail a conditional in-
dependency (namely I({F}, {G}|{D})) that is there. This is a violation of the
faithfulness condition (discussed in Chapter 2), not the Markov condition. In
general, we would not want to do this because it makes the DAG less informative
and unnecessarily increases the size of the instance (which is important because,
as we shall see in Section 3.6, the problem of doing inference in Bayesian net-
works is # P-complete). However, a few mistakes of this sort are not that serious
as we can still expect the Markov condition to be satisfied.
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The Causal Markov Assumption

We've offered a definition of causation based on manipulation, and we’ve argued
that, given this definition of causation, a causal DAG often satisfies the Markov
condition with the probability distribution of the variables, which means we
can construct a Bayesian network by creating a causal DAG. In general, given
any definitions of ‘causation’ and ‘direct causal influence,’ if we create a causal
DAG G = (V,E) and assume the probability distribution of the variables in
V satisfies the Markov condition with G, we say we are making the causal
Markov assumption.

As discussed above, if the following three conditions are satisfied the causal
Markov assumption is ordinarily warranted: 1) there must be no hidden common
causes; 2) selection bias must not be present; and 3) there must be no causal
feedback loops. In general, when constructing a Bayesian network using identi-
fied causal influences, one must take care that the causal Markov assumptions
holds.

Often we identify causes using methods other than manipulation. For exam-
ple, most of us believe smoking causes lung cancer. Yet we have not manipulated
individuals by making them smoke. We believe in this causal influence because
smoking and lung cancer are correlated, the smoking precedes the cancer in time
(a common assumption is that an effect cannot precede a cause), and there are
biochemical changes associated with smoking. All of this could possibly be ex-
plained by a hidden common cause (Perhaps a genetic defect causes both.), but
domain experts essentially rule out this possibility. When we identify causes by
any means whatsoever, ordinarily we feel they are ones that could be identified
by manipulation if we were to perform a RCE, and we make the causal Markov
assumption as long as we are confident exceptions such as conditions (1), (2)
and (3) in the preceding paragraph are not present.

An example of constructing a causal DAG follows.

Example 1.34 Suppose we have identified the following causal influences by
some means: A history of smoking (H) has a causal effect both on bronchitis
(B) and on lung cancer (L). Furthermore, each of these variables can cause
fatigue (F'). Lung Cancer (L) can cause a positive chest X-ray (C). Then
the DAG in Figure 1.10 represents our identified causal relationships among
these variables. If we believe 1) these are the only causal influences among the
variables; 2) there are no hidden common causes; and 3) selection bias is not
present, it seems reasonable to make the causal Markov assumption. Then if
the conditional distributions specified in Figure 1.10 are our estimates of the
conditional relative frequencies, that DAG along with those specified conditional
distributions constitute a Bayesian network which represents our beliefs.

Before closing we mention an objection to the causal Markov condition. That
is, unless we abandon the ‘locality principle’ the condition seems to be violated
in some quantum mechanical experiments. See [Spirtes et al, 1993, 2000] for a
discussion of this matter.
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Figure 1.18: C' and S are not independent in (a), but the instantiation of V in
(b) renders them independent.

The Markov Condition Without Causation

Using causal edges is just one way to develop a DAG and a probability dis-
tribution that satisfy the Markov condition. In Example 1.25 we showed the
joint distribution of V' (value), S (shape), and C' (color) satisfied the Markov
condition with the DAG in Figure 1.3 (a), but we would not say that the color
of an object has a causal influence on its shape. The Markov condition is simply
a property of the probabilistic relationships among the variables. Furthermore,
if the DAG in Figure 1.3 (a) did capture the causal relationships among some
causally sufficient set of variables and there was no selection bias present, the
Markov condition would be satisfied not only with that DAG but also with the
DAGS in Figures 1.3 (b) and (c). Yet we certainly would not say the edges in
these latter two DAGs represent causal influence.

Some Final Examples

To solidify the notion that the Markov condition is often satisfied by a causal
DAG, we close with three simple examples. We present these examples using
an intuitive approach, which shows how humans reason qualitatively with the
dependencies and conditional independencies among variables. In accordance
with this approach, we again use the name of a variable to stand also for a value.
For example, in modeling whether an individual has a cold, we use a variable C'
whose value is present or absent, and we also use C' to represent that a cold is
present.

Example 1.35 If Alice’s husband Ralph was planning a surprise birthday party
for Alice with a caterer (C), this may cause him to visit the caterer’s store (V).
The act of visiting that store could cause him to be seen (S) wvisiting the store.
So the causal relationships among the variables are the ones shown in Figure
1.18 (a). There is no direct path from C to S because planning the party with
the caterer could only cause him to be seen visiting the store if it caused him
to actually wvisit the store. If Alice’s friend Trixie reported to her that she had
seen Ralph wvisiting the caterer’s store today, Alice would conclude that he may
be planning a surprise birthday party because she would feel there is a good
chance Trizie really did see Ralph visiting the store, and, if this actually was
the case, there is a chance he may be planning a surprise birthday party. So C
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Figure 1.19: If C is the only common cause of R and S (a), we need to instan-
tiate only C' (b) to render them independent. If they have exactly two common

causes, C' and H (c), we need to instantiate both C' and H (d) to render them
independent.

(d)

and S are not independent. If, however, Alice had already witnessed this same
act of Ralph visiting the caterer’s store, she would already suspect Ralph may be
planning a surprise birthday party. Trizie’s testimony would not affect here belief
concerning Ralph’s visiting the store and therefore would have no affect on her
belief concerning his planning a party. So C and S are conditionally independent
given V', as the Markov condition entails for the DAG in Figure 1.18 (a). The
instantiation of V, which renders C' and S independent, is depicted in Figure
1.18 (b) by placing a cross through V.

Example 1.36 A cold (C) can cause both sneezing (S) and a runny nose (R).
Assume neither of these manifestations causes the other and, for the moment,
also assume there are no hidden common causes (That is, this set of variables
is causally sufficient.). The causal relationships among the variables are then
the ones depicted in Figure 1.19 (a). Suppose now that Professor Patel walks
into the classroom with a runny nose. You would fear she has a cold, and,
if so, the cold may make her sneeze. So you back off from her to avoid the
possible sneeze. We see then that S and R are not independent. Suppose next
that Professor Patel calls school in the morning to announce she has a cold
which will make her late for class. When she finally does arrive, you back off
immediately because you feel the cold may make her sneeze. If you see that
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Figure 1.20: B and F are independent in (a), but the instantiation of A in (b)
renders them dependent.

her nose is running, this has no affect on your belief concerning her sneezing
because the runny nose no longer makes the cold more probable (You know she
has a cold.). So S and R are conditionally independent given C, as the Markov
condition entails for the DAG in Figure 1.19 (a). The instantiation of C is
depicted in Figure 1.19 (b).

There actually is at least one other common cause of sneezing and a runny
nose, namely hay fever (H). Suppose this is the only common cause missing
from Figure 1.19 (a). The causal relationships among the variables would then
be as depicted in Figure 1.19 (¢). Given this, conditioning on C' is not sufficient
to render R and S independent, because R could still make S more probable by
making H more probable. So we must condition on both C' and H to render R
and S independent. The instantiation of C' and H is depicted in Figure 1.19

(d).

Example 1.37 Antonio has observed that his burglar alarm (A) has sometimes
gone off when a freight truck (F') was making a delivery to the Home Depot in
back of his house. So he feels a freight truck can trigger the alarm. However,
he also believes a burglar (B) can trigger the alarm. He does not feel that
the appearance of a burglar might cause a freight truck to make a delivery or
vice versa. Therefore, he feels that the causal relationships among the variables
are the ones depicted in Figure 1.20 (a). Suppose Antonio sees a freight truck
making a delivery in back of his house. This does mot make him feel a burglar
is more probable. So F' and B are independent, as the Markov condition entails
for the DAG in Figure 1.20 (a). Suppose next that Antonio is awakened at
night by the sounding of his burglar alarm. This increases his belief that a
burglar is present, and he begins fearing this is indeed the case. However, as he
proceeds to investigate this possibility, he notices that a freight truck is making
a deliery in back of his house. He reasons that this truck explains away the
alarm, and therefore he believes a burglar probably is not present. So he relaxes
a bit. Given the alarm has sounded, learning that a freight truck is present
decreases the probability of a burglar. So the instantiation of A, as depicted in
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Figure 1.20 (b), renders F' and B conditionally dependent. As noted previously,
the instantiation of a common effect creates a dependence between its causes
because each explains away the occurrence of the effect, thereby making the other
cause less likely.

Note that the Markov condition does not entail that F' and B are condition-
ally dependent given A. Indeed, a probability distribution can satisfy the Markov
condition for a DAG (See Exercise 2.18) without this conditional dependence oc-
curring. However, if this conditional dependence does not occur, the distribution
does not satisfy the faithfulness condition with the DAG. Faithfulness is defined
earlier in this section and is discussed in Chapter 2.

EXERCISES

Section 1.1

Exercise 1.1 Kerrich [1946] performed experiments such as tossing a coin
many times, and he found that the relative frequency did appear to approach a
limit. That is, for ezample, he found that after 100 tosses the relative frequency
may have been .51, after 1000 it may have been .508, after 10,000 tosses it may
have been .5003, and after 100,000 tosses, it may have been .50008. The pattern
is that the 5 in the first place to the right of the decimal point remains in all
relative frequencies after the first 100 tosses, the 0 in the second place remains
in all relative frequencies after the first 1000 tosses, etc. Toss a thumbtack at
least 1000 times and see if you obtain similar results.

Exercise 1.2 Pick some upcoming event (It could be a sporting event or it
could even be the event that you get an ‘A’ in this course.) and determine your
probability of the event using Lindley’s [1985] method of comparing the uncertain
event to a draw of a ball from an urn (See Example 1.3.).

Exercise 1.3 Prove Theorem 1.1.

Exercise 1.4 Fzample 1.6 showed that, in the draw of the top card from a deck,
the event Queen is independent of the event Spade. That is, it showed P(Queen|
Spade) = P(Queen).

1. Show directly that the event Spade is independent of the event Queen. That
is, show P(Spade|Queen) = P(Spade). Show also that P(QueenNSpade) =
P(Queen)P(Spade).

2. Show, in general, that if P(E) # 0 and P(F) # 0, then P(E|F) = P(E) if
and only if P(F|E) = P(F) and each of these holds if and only if P(ENF) =
P(E)P(F).
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Exercise 1.5 The complement of a set E consists of all the elements in Q that
are not in E and is denoted by E.

1. Show that E is independent of F if and only if E is independent of F, which
is true if and only if E is independent of F.

2. Example 1.8 showed that, for the objects in Figure 1.2, One and Square are
conditionally independent given Black and given White. Let Two be the set
of all objects containing a 2’ and Round be the set of all round objects.
Use the result just obtained to conclude Two and Square, One and Round,
and Two and Round are each conditionally independent given either Black
or White.

Exercise 1.6 Fxample 1.7 showed that, in the draw of the top card from a
deck, the event E = {kh, ks, qh} and the event F = {kh, kc,qh} are conditionally
independent given the event G = {kh, ks, ke, kd}. Determine whether E and F
are conditionally independent given G.

Exercise 1.7 Prove the rule of total probability, which says if we have n mu-
tually exclusive and exhaustive events Ei,Eo,...E,, then for any other event
F

7
n

P(F)=>_ P(FNE).

i=1

Exercise 1.8 Let Q) be the set of all objects in Figure 1.2, and assign each
object a probability of 1/13. Let One be the set of all objects containing a 1,
and Square be the set of all square objects. Compute P(One|Square) directly and
using Bayes’ Theorem.

Exercise 1.9 Let a joint probability distribution be given. Using the law of
total probability, show that the probability distribution of any one of the random
variables is obtained by summing over all values of the other variables.

Exercise 1.10 Use the results in Ezxercise 1.5 (1) to conclude that it was only
necessary in Example 1.18 to show that P(r,t) = P(r,t|s1) for all values of r
and t.

Exercise 1.11 Suppose we have two random wvariables X and Y with spaces
{z1,22} and {yl,y2} respectively.

1. Use the results in Exercise 1.5 (1) to conclude that we need only show
P(yl|lx1l) = P(yl) to conclude Ip(X,Y).

2. Develop an example showing that if X and Y both have spaces containing
more than two values, then we need check whether P(y|z) = P(y) for all
values of x and y to conclude Ip(X,Y).

Exercise 1.12 Consider the probability space and random wvariables given in
FEzxample 1.17.
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1. Determine the joint distributions of S and W, of W and H, and the
remaining values in the joint distribution of S, H, and W.

2. Show that the joint distribution of S and H can be obtained by summing
the joint distribution of S, H, and W over all values of W'.

3. Are H and W independent? Are H and W conditionally independent
given S'? If this small sample is indicative of the probabilistic relationships
among the variables in some population, what causal relationships might
account for this dependency and conditional independency?

Exercise 1.13 The chain rule states that given n random variables X1, Xao, . ..
X, defined on the same sample space €,

P(ZI?l,ZI?g, .. ZIIn) = P(ZI)nlilin_l,ZIIn_g, .. .2131) s P(l?ngBl)P(ZI?l)

whenever P(xy1,xa,...x,) # 0. Prove this rule.

Section 1.2

Exercise 1.14 Suppose we are developing a system for diagnosing viral infec-
tions, and one of our random variables is Fever. If we specify the possible values
yes and no, is the clarity test passed? If not, further distinguish the values so
it is passed.

Exercise 1.15 Prove Theorem 1.35.

Exercise 1.16 Let V = {X,Y,Z}, let X, Y, and Z have spaces {x1,12},
{y1,y2}, and {z1, 22} respectively, and specify the following values:

P(z1) = .2 P(yllzl)=.3 P(z1|z1) =1
P(22) =.8 P(y2lzl) =.7 P(22|z1) = .9

P(yllz2) =4 P(z1|z2) = .5
P(y2|z2) = .6 P(22|z2) = 5.

Define a joint probability distribution P of X, Y, and Z as the product of these
values.
1. Show that the values in this joint distribution sum to 1, and therefore this

is a way of specifying a joint probability distribution according to Definition
1.8.

2. Show further that Ip(Z,Y|X). Note that this conditional independency
follows from Theorem 1.5 in Section 1.3.3.
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Exercise 1.17 A forgetful nurse is supposed to give Mr. Nguyen a pill each
day. The probability that she will forget to give the pill on a given day is .3. If
he receives the pill, the probability he will die is .1. If he does not receive the pill,
the probability he will die is .8. Mr. Nguyen died today. Use Bayes’ theorem to
compute the probability the nurse forgot to give him the pill.

Exercise 1.18 An oil well may be drilled on Professor Neapolitan’s farm in
Texas. Based on what has happened on similar farms, we judge the probability
of oil being present to be .5, the probability of only natural gas being present to
be .2, and the probability of neither being present to be .3. If oil is present, a
geological test will give a positive result with probability .9; if only natural gas
is present, it will give a positive result with probability .3; and if neither are
present, the test will be positive with probability .1. Suppose the test comes back
positive. Use Bayes’ theorem to compute the probability oil is present.

Section 1.3

Exercise 1.19 Consider Figure 1.3.

1. The probability distribution in Example 1.25 satisfies the Markov condition
with the DAGs in Figures 1.3 (b) and (c). Therefore, owing to Theorem
1.4, that probability distribution is equal to the product of its conditional
distributions for each of them. Show this directly.

2. Show that the probability distribution in Example 1.25 is not equal to the
product of its conditional distributions for the DAG in Figure 1.3 (d).

Exercise 1.20 Create an arrangement of objects similar to the one in Figure
1.2, but with a different distribution of values, shapes, and colors, so that, if
random variables V', S, and C' are defined as in FExample 1.25, then the only
independency or conditional independency among the variables is Ip(V, S). Does
this distribution satisfy the Markov condition with any of the DAGs in Figure
1.37 If so, which one(s)?

Exercise 1.21 Complete the proof of Theorem 1.5 by showing the specified con-
ditional distributions are the conditional distributions they notationally represent
in the joint distribution.

Exercise 1.22 Consider the objects in Figure 1.2 and the random variables
defined in Example 1.25. Repeatedly sample objects with replacement to obtain
estimates of P(c), P(v|c), and P(s|c). Take the product of these estimates and
compare it to the actual joint probability distribution.
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Exercise 1.23 Consider the objects in Figure 1.2 and the joint probability dis-
tribution of the random variables defined in Example 1.25. Suppose we compute
its conditional distributions for the DAG in Figure 1.3 (d), and we take their
product. Theorem 1.5 says this product is a joint probability distribution that
constitutes a Bayesian network with that DAG. Is this the actual joint probability
distribution of the variables? If not, what is it?

Section 1.4

Exercise 1.24 Professor Morris investigated gender bias in hiring in the fol-
lowing way. He gave hiring personnel equal numbers of male and female resumes
to review, and then he investigated whether their evaluations were correlated with
gender. When he submitted a paper summarizing his results to a psychology
jJournal, the reviewers rejected the paper because they said this was an example
of fat hand manipulation. Explain why they might have thought this. Elucidate
your explanation by identifying all relevant variables in the RCE and drawing a
DAG like the one in Figure 1.15.

Exercise 1.25 Consider the following piece of medical knowledge taken from
[Lauritzen and Spiegelhalter, 1988]: Tuberculosis and lung cancer can each cause
shortness of breath (dyspnea) and a positive chest X-ray. Bronchitis is another
cause of dyspnea. A recent visit to Asia can increase the probability of tuber-
culosis.  Smoking can cause both lung cancer and bronchitis. Create a DAG
representing the causal relationships among these variables. Complete the con-
struction of a Bayesian network by determining values for the conditional prob-
ability distributions in this DAG either based on your own subjective judgement
or from data.
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Chapter 2

More DAG /Probability
Relationships

The previous chapter only introduced one relationship between probability dis-
tributions and DAGs, namely the Markov condition. However, the Markov con-
dition only entails independencies; it does not entail any dependencies. That is,
when we only know that (G, P) satisfies the Markov condition, we know the ab-
sence of an edge between X any Y entails there is no direct dependency between
X any Y, but the presence of an edge between X and Y does not mean there is a
direct dependency. In general, we would want an edge to mean there is a direct
dependency. In Section 2.3, we discuss another condition, namely the faithful-
ness condition, which does entail this. The concept of faithfulness is essential to
the methods for learning the structure of Bayesian networks from data, which
are discussed in Chapters 8-11. For some probability distributions P it is not
possible to find a DAG with which P satisfies the faithfulness condition. In Sec-
tion 2.4 we present the minimality condition, and we shall see that it is always
possible to find a DAG G such that (G, P) satisfies the minimality condition. In
Section 2.5 we discuss Markov blankets and Markov boundaries, which are sets
of variables that render a given variable conditionally independent of all other
variables. Finally, in Section 2.6 we show how the concepts addressed in this
chapter relate to causal DAGs. Before any of this, in Section 2.1 we show what
conditional independencies are entailed by the Markov condition, and in Sec-
tion 2.2 we describe Markov equivalence, which groups DAGs into equivalence
classes based on the conditional independencies they entail. Knowledge of the
conditional independencies entailed by the Markov condition is needed to de-
velop a message-passing inference algorithm in Chapter 3, while the concept of
Markov equivalence is necessary to the structure learning algorithms developed
in Chapters 8-11.

65
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2.1 Entailed Conditional Independencies

If (G, P) satisfies the Markov condition, then each node in G is conditionally
independent of the set of all its nondescendents given its parents. Do these
conditional independencies entail any other conditional independencies? That
is, if (G, P) satisfies the Markov condition, are there any other conditional inde-
pendencies which P must satisfy other than the one based on a node’s parents?
The answer is yes. Before explicitly stating these entailed independencies, we
illustrate that one would expect them.
First we make the notion of ‘entailed conditional independency’ explicit:

Definition 2.1 Let G = (V,E) be a DAG, where V is a set of random variables.
We say that, based on the Markov condition, G entails conditional indepen-
dency Ip(A,B|C) for A/B,CCV if

Ip(A,B|C) holds for every P € Pg,

where Pg is the set of all probability distributions P such that (G, P) satisfies
the Markov condition. We also say the Markov condition entails the conditional
independency for G and that the conditional independency is in G.

Note that the independency Ip(A,B) is included in the previous definition
because it is the same as Ip(A, B|@). Regardless of whether C is the empty set,
for brevity we often just refer to Ip(A,B|C) as an ‘independency’ instead of a
‘conditional independency’.

2.1.1 Examples of Entailed Conditional Independencies

Suppose some distribution P satisfies the Markov condition with the DAG
in Figure 2.1. Then we know Ip({C}, {F,G}|{B}) because B is the par-
ent of C, and F' and G are nondescendents of C. Furthermore, we know
Ip({B},{G}|{F}) because F is the parent of B, and G is a nondescendent
of B. These are the only conditional independencies according to the statement
of the Markov condition. However, can any other conditional independencies be
deduced from them? For example, can we conclude Ip({C},{G}{F})? Let’s
first give the variables meaning and the DAG a causal interpretation to see if
we would expect this conditional independency.

Suppose we are investigating how professors obtain citations, and the vari-
ables represent the following:

G: Graduate Program Quality
F: First Job Quality

B: Number of Publications
C: Number of Citations.

Further suppose the DAG in Figure 2.1 represents the causal relationships
among these variable, there are no hidden common causes, and selection bias is
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OO

Figure 2.1: I({C},{G}|{F'}) can be deduced from the Markov condition.

not present.! Then it is reasonable to make the causal Markov assumption, and
we would feel the probability distribution of the variables satisfies the Markov
condition with the DAG. Given all this, if we learned that Professor La Budde
attended a graduate program of high quality (That is, we found out the value
of G for Professor La Budde was ‘high quality’.), we would expect his first job
may well be of high quality, which means there should be a large number of
publications, which in turn implies there should be a large number of citations.
Therefore, we would not expect Ip(C,G). If we learned that Professor Pelle-
grini’s first job was of the high quality (That is, we found out the value of F' for
Professor Pellegrini was ‘high quality’.), we would expect his number of publi-
cations to be large, and in turn his number of citations to be large. That is, we
would also not expect Ip(C, F'). If Professor Pellegrini then told us he attended
a graduate program of high quality, would we expect the number of citations
to be even higher than we previously thought? It seems not. The graduate
program’s high quality implies the number of citations is probably large be-
cause it implies the first job is probably of high quality. Once we already know
the first job is of high quality, the information on the graduate program should
be irrelevant to our beliefs concerning the number of citations. Therefore, we
would expect C' to not only be conditionally independent of G given its parent
B, but also its grandparent F'. Either one seems to block the dependency be-

I'We make no claim this model accurately represents the causal relationships among the
variables. See [Spirtes et al, 1993, 2000] for a detailed discussion of this problem.
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©

Figure 2.2: Ip({C},{G}|{A, F'}) can be deduced from the Markov condition.

tween G and C' that exists through the chain [G, F, B, C]. So we would expect
Ip({C}HAGH{F}).

It is straightforward to show that the Markov condition does indeed entail
Ip({C},{G}|{F}) for the DAG G in Figure 2.1. We illustrate this for the case
where the variables are discrete. If (G, P) satisfies the Markov condition,

P(clg,f) = Y P(cb.g. f)P(blg, f)
b
= Y P(cp, ))P(blf)
b
= P(lf).

The second step is due to the Markov condition.

Suppose next we have an arbitrarily long directed linked list of variables
and P satisfies the Markov condition with that list. In the same way as above,
we can show that, for any variable in the list, the set of variables above it are
conditionally independent of the set of variables below it given that variable.

Suppose now that P does not satisfy the Markov condition with the DAG
in Figure 2.1 because there is a common cause A of G and B. For the sake of
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Figure 2.3: The Markov condition does not entail I({F}, {A}{B,G}).

illustration, let’s say A represents the following in the current example:
A: Ability.

Further suppose there are no other hidden common causes so that we would now
expect P to satisfy the Markov condition with the DAG in Figure 2.2. Would we
still expect Ip({C},{G}{F})? It seems not. For example, suppose again that
we initially learn Professor Pellegrini’s first job was of high quality. As before,
we would feel it probable that he has a high number of citations. Suppose again
that we next learn his graduate program was of high quality. Given the current
model, this fact is indicative of his having high ability, which can affect his
publication rate (and thereby his citation rate) directly. So we would not feel
Ip({C},{G}|{F}) as we did with the previous model. However, if we knew the
state of Professor Pellegrini’s ability, his attendance at a high quality graduate
program could no longer be indicative of his ability, and therefore it would not
affect our belief concerning his citation rate through the chain [G, A, B, C]. That
is, this chain is blocked at A. So we would expect Ip({C},{G}/{A, F'}). Indeed,
it is possible to prove the Markov condition does entail Ip({C}, {G}|{A, F'}) for
the DAG in Figure 2.2.

Finally, consider the conditional independency Ip({F'},{A}|{G}). This in-
dependency is obtained directly by applying the Markov condition to the DAG



70 CHAPTER 2. MORE DAG/PROBABILITY RELATIONSHIPS

Figure 2.4: There is an uncoupled head-to-head meeting at Z.

in Figure 2.2. So we will not offer an intuitive explanation for it. Rather we
discuss whether we would expect the independency to be maintained if we also
learned the state of B. That is, would we expect Ip({F},{A}{B,G})? Sup-
pose we first learn Professor Georgakis has a high publication rate (the value
of B) and attended a high quality graduate program (the value of G). Then
we later learned she also has high ability (the value of A). In this case, her
high ability could explain away her high publication rate, thereby making it less
probable she had a high quality first job (As mentioned in Section 1.4.1, psychol-
ogists call this explaining away discounting.) So the chain [A, B, F] is opened
by instantiating B, and we would not expect Ip({F},{A}|{B,G}). Indeed, the
Markov condition does not entail Ip({F},{A}|{B,G}) for the DAG in Figure
2.2. This situation is illustrated in Figure 2.3. Note that the instantiation of
C should also open the chain [A, B, F]. That is, if we know the citation rate is
high, then it is probable the publication rate is high, and each of the causes of B
can explain away this high probability. Indeed, the Markov condition does not
entail Ip({F}, {A}|{C, G}) either. Note further that we are only saying that the
Markov condition doe not entail Ip({F},{A}|{B,G}). We are not saying the
Markov condition entails "Ip({F},{A}[{B,G}). Indeed, the Markov condition
can never entail a dependency; it can only entail an independency. Exercise 2.18
shows an example where this conditional dependency does not occur. That is,
it shows a case where there is no discounting.

2.1.2 d-Separation

We showed in Section 2.1.1 that the Markov condition entails Ip ({C'}, {G}|{F})
for the DAG in Figure 2.1. This conditional independency is an example of
a DAG property called ‘d-separation’. That is, {C} and {G} are d-separated
by {4,F} in the DAG in Figure 2.1. Next we develop the concept of d-
separation, and we show the following: 1) The Markov condition entails that
all d-separations are conditional independencies; and 2) every conditional inde-
pendencies entailed by the Markov condition is identified by d-separation. That
is, if (G, P) satisfies the Markov condition, every d-separation in G is a condi-
tional independency in P. Furthermore, every conditional independency, which
is common to all probability distributions satisfying the Markov condition with
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G, is identified by d-separation.

All d-separations are Conditional Independencies

First we need review more graph theory. Suppose we have a DAG G = (V, E),
and a set of nodes {X1, Xa,...., Xi}, where & > 2, such (X;_1,X;) € E or
(X3, X;-1) € Efor 2 < i < k. We call the set of edges connecting the k
nodes a chain between X; and Xj;. We denote the chain using both the se-
quence [Xi1,Xo,....,Xk] and the sequence [Xj, Xj—1,....,X1]. For example,
[G, A, B,C] and [C, B, A, G] represent the same chain between G and C' in the
DAG in Figure 2.3. Another chain between G and C'is [G, F, B,C]. The nodes
Xa, ... X1 are called interior nodes on chain [ X, Xs, ... X;]. The subchain
of chain [X1, Xs, ... X}| between X; and X; is the chain [X;, X, 11, ... X;]| where
1 <i<j <k Acycleisa chain between a node and itself. A simple chain
is a chain containing no subchains which are cycles. We often denote chains
by showing undirected lines between the nodes in the chain. For example, we
would denote the chain [G, 4, B,C] as G — A — B — C. If we want to show the
direction of the edges, we use arrows. For example, to show the direction of the
edges, we denote the previous chain as G « A — B — (. A chain containing
two nodes, such as X — Y is called a link. A directed link, such as X — Y/,
represents an edge, and we will call it an edge. Given the edge X — Y, we say
the tail of the edge is at X and the head of the edge is Y. We also say the
following;:

e A chain X — Z — Y is a head-to—tail meeting, the edges meet head-
to-tail at Z, and Z is a head-to-tail node on the chain.

e A chain X «+ Z — Y is a tail-to—tail meeting, the edges meet tail-to-
tail at Z, and Z is a tail-to-tail node on the chain.

e A chain X — Z « Y is a head-to—head meeting, the edges meet
head-to-head at Z, and Z is a head-to-head node on the chain.

e A chain X —Z—Y, such that X and Y are not adjacent, is an uncoupled
meeting.

Figure 2.4 shows an uncoupled head-to-head meeting.
We now have the following definition:

Definition 2.2 Let G = (V,E) be a DAG, ACV, X and Y be distinct nodes
mV —A, and p be a chain between X and Y. Then p is blocked by A if one of
the following holds:

1. There is a node Z € A on the chain p, and the edges incident to Z on p
meet head-to-tail at Z.

2. There is a node Z € A on the chain p, and the edges incident to Z on p
meet tail-to-tail at Z.
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Figure 2.5: A DAG used to illustrate chain blocking.

3. There is a node Z, such that Z and all of Z’s descendents are not in A,
on the chain p, and the edges incident to Z on p meet head-to-head at Z.

We say the chain is blocked at any node in A where one of the above meetings
takes place. There may be more than one such node. The chain is called active
giwven A if it is not blocked by A.

Example 2.1 Consider the DAG in Figure 2.5.

1. The chain [Y, X, Z,S] is blocked by {X} because the edges on the chain
incident to X meet tail-to-tail at X. That chain is also blocked by {Z}
because the edges on the chain incident to Z meet head-to-tail at Z .

2. The chain W)Y, R, Z,S] is blocked by & because R ¢ &, T ¢ &, and the
edges on the chain incident to R meet head-to-head at R.

3. The chain [W,Y, R, S| is blocked by {R} because the edges on the chain
incident to R meet head-to-tail at R.

4. The chain W)Y, R, Z,S] is not blocked by {R} because the edges on the
chain incident to R meet head-to-head at R. Furthermore, this chain is
not blocked by {T} because T is a descendent of R.

We can now define d-separation.

Definition 2.3 Let G = (V,E) be a DAG, A C V, and X and Y be distinct
nodes in V — A. We say X and Y are d-separated by A in G if every chain
between X and'Y is blocked by A.
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It is not hard to see that every chain between X and Y is blocked by A if
and only if every simple chain between X and Y is blocked by A.

Example 2.2 Consider the DAG in Figure 2.5.

1.

10.

X and R are d-separated by {Y,Z} because the chain [X,Y, R] is blocked
at'Y, and the chain [X, Z, R)] is blocked at Z.

X and T are d-separated by {Y, Z} because the chain [X,Y, R, T) is blocked
at'Y, the chain [X, Z, R, T] is blocked at Z, and the chain [X,Z, S, R, T)
is blocked at Z and at S.

W and T are d-separated by {R} because the chains [W,Y,R,T| and
W)Y, X, Z, R, T] are both blocked at R.

.Y and Z are d-separated by {X} because the chain [Y, X, Z] is blocked at

X, the chain Y, R, Z] is blocked at R, and the chain [Y, R, S, Z] is blocked
at S.

W and S are d-separated by { R, Z} because the chain [W,Y, R, S| is blocked
at R, the chains [W,Y, R, Z,S] and [W,Y, X, Z, S| are both blocked at Z.

W and S are also d-separated by {Y,Z} because the chain [W,Y, R, S| is
blocked at'Y, the chain W)Y, R, Z, S| is blocked at Y, R, and Z, and the
chain (W,Y, X, Z,S] is blocked at Z.

W and S are also d-separated by {Y, X}. You should determine why.

W and X are d-separated by & because the chain [W,Y, X] is blocked at'Y,
the chain [W,Y, R, Z, X] is blocked at R, and the chain W)Y, R, S, Z, X|
is blocked at S.

W and X are not d-separated by {Y'} because the chain [W,Y, X| is not
blocked atY since Y e{Y '} and clearly it could not be blocked anywhere else.

W and T are not d-separated by {Y} because, even though the chain
[W,Y, R, T] is blocked at Y, the chain [W,Y, X, Z, R, T] is not blocked at Y’
since Ye{Y'} and this chain is not blocked anywhere else because no other
nodes are in {Y'} and there are no other head-to-head meetings on it.

Definition 2.4 Let G = (V,E) be a DAG, and A, B, and C be mutually disjoint
subsets of V. We say A and B are d-separated by C in G if for every X € A and
Y €B, X and Y are d-separated by C. We write

If C= @, we write only

Ig(A,B).
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Example 2.3 Consider the DAG in Figure 2.5. We have

because every chain between W and S, W and T, X and S, and X and T is
blocked by {R, Z}.

We write I (A, B|C) because, as we show next, d-separation identifies all and
only those conditional independencies entailed by the Markov condition for G.
We need the following three lemmas to prove this:

Lemma 2.1 Let P be a probability distribution of the variables in V and G =
(V,E) be a DAG. Then (G, P) satisfies the Markov condition if and only if for
every three mutually disjoint subsets A,B,C C V, whenever A and B are d-
separated by C, A and B are conditionally independent in P given C. That is,
(G, P) satisfies the Markov condition if and only if

Ic(A,B|C) = Ip(A,B|C). (2.1)

Proof. The proof that, if (G, P) satisfies the Markov condition, then each d-
separation implies the corresponding conditional independency is quite lengthy
and can be found in [Verma and Pearl, 1990] and in [Neapolitan, 1990].

As to the other direction, suppose each d-separation implies a conditional
independency. That is, suppose Implication 2.1 holds. It is not hard to see that
a node’s parents d-separate the node from all its nondescendents that are not its
parents. That is, if we denote the sets of parents and nondescendents of X by
PAx and NDx respectively, we have

Ig({X},NDx — PAx|PAx).
Since Implication 2.1 holds, we can therefore conclude
Ip({X},NDx — PAx[PAx),
which clearly states the same conditional independencies as
Ip({X},NDx|PAy),
which means the Markov condition is satisfied.

According to the previous lemma, if A and B are d-separated by C in G,
the Markov condition entails Ip(A, B|C). For this reason, if (G, P) satisfies the
Markov condition, we say G is an independence map of P.

We close with an intuitive explanation for why every d-separation is a con-
ditional independency. If G = (V,E) and (G, P) satisfies the Markov condition,
any dependency in P between two variables in V would have to be through
a chain between them in G that has no head-to-head meetings. For example,
suppose P satisfies the Markov condition with the DAG in Figure 2.5. Any
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dependency in P between X and T would have to be either through the chain
[X,Y, R, T] or the chain [X, Z, R, T]. There could be no dependency through the
chain [X, Z, S, R, T] owing to the head-to-head meeting at S. If we instantiate
a variable on a chain with no head-to-head meeting, we block the dependency
through that chain. For example, if we instantiate Y we block the dependency
between X and T through the chain [X,Y, R, T], and if we instantiate Z we
block the dependency between X and 7T through the chain [X, Z, R, T]. If we
block all such dependencies, we render the two variables independent. For ex-
ample, the instantiation of Y and Z render X and T independent. In summary,
the fact that we have Ig({ X}, {T}/{Y, Z}) means we have Ip({ X },{T}{Y, Z}).
If every chain between two nodes contains a head-to-head meeting, there is no
chain through which they could be dependent, and they are independent. For
example, if P satisfies the Markov condition with the DAG in Figure 2.5, W and
X are independent in P. That is, the fact that we have Ig({W}, {X}) means
we have Ip({W},{X}). Note that we cannot conclude Ip({W}, {X}|{Y}) from
the Markov condition, and we do not have Ig({W}, {X}{Y}).

Every Entailed Conditional Independency is Identified by d-separation

Could there be conditional independencies, other than those identified by d-
separation, that are entailed by the Markov condition? The answer is no. The
next two lemmas prove this. First we have a definition.

Definition 2.5 LetV be a set of random variables, and A1, B1, C1, Ay ,Ba, and
Ca be subsets of V. We say conditional independency Ip(A1,B1|Cy) is equiva-

lent to conditional independency Ip(Az, Ba|Ca) if for every probability distribu-
tion P of V, Ip(A1,B1|Cy) holds if and only if Ip(As, Ba|Cs) holds.

Lemma 2.2 Any conditional independency entailed by a DAG, based on the
Markov condition, is equivalent to a conditional independency among disjoint
sets of random variables.

Proof. The proof is developed in Exercise 2.4.

Due to the preceding lemma, we need only discuss disjoint sets of random
variables when investigating conditional independencies entailed by the Markov
condition. The next lemma states that the only such conditional independencies
are those that correspond to d-separations:

Lemma 2.3 Let G = (V,E) be a DAG, and P be the set of all probability
distributions P such that (G, P) satisfies the Markov condition. Then for every
three mutually disjoint subsets A,B,C C V,

Ip(A,B|C) for all P € P = Ig(A,B|C).
Proof. The proof can be found in [Geiger and Pearl, 1990].

Before stating the main theorem concerning d-separation, we need the fol-
lowing definition:
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()

P(x1) =a P(yljx1)=1-(+c) P(zllyl)=e
P(x2) = 1-a P(y2|x1) =c¢ P(z2lyl)=1-e
P(y3|x1) =b
P(z1lly2) =e
P(yljx2)=1-(b+d) P(z2ly2)=1-e
P(y2|x2) =d
P(y3|x2) =b P(z1ly3) =f
P(z2ly3) =1 -f

Figure 2.6: For this (G, P), we have Ip({X}, {Z}) but not Ig({X},{Z}).

Definition 2.6 We say conditional independency Ip(A,B|C) is identified by
d-separation in G if one of the following holds:

1. Is(A,B|C).

2. A, B, and C are not mutually disjoint; A’, B', and C' are mutually disjoint,
Ip(A,B|C) and Ip(A',B'|C’) are equivalent, and we have Ig(A’,B'|C").

Theorem 2.1 Based on the Markov condition, a DAG G entails all and only
those conditional independencies that are identified by d-separation in G.

Proof. The proof follows immediately from the preceding three lemmas.

You must be careful to interpret Theorem 2.1 correctly. A particular dis-
tribution P, that satisfies the Markov condition with G, may have conditional
independencies that are not identified by d-separation. For example, consider
the Bayesian network in Figure 2.6. It is left as an exercise to show Ip({X},{Z})
for the distribution P in that network. Clearly, Ig({X},{Z}) is not the case.
However, there are many distributions, which satisfy the Markov condition with
the DAG in that figure, that do not have this independency. One such distri-
bution is the one given in Example 1.25 (with X, Y, and Z replaced by V,
C, and S respectively). The only independency, that exists in all distribu-
tions satisfying the Markov condition with this DAG, is Ip({X},{Z}{Y'}), and
Ic({X},{Z}|{Y'}) is the case.

2.1.3 Finding d-Separations

Since d-separations entail conditional independencies, we want an efficient al-
gorithm for determining whether two sets are d-separated by another set. We
develop such an algorithm next. After that, we show a useful application of the
algorithm.
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Figure 2.7: If the set of legal pairs is {(X — Y)Y — V), (Y - V|V — Q),
X->WW-=8),X-UU0U-1T),U-TT—M), (T —MM-—S),
(M — S,8—=V),(S—V,V - Q)}, and we are looking for the nodes reachable
from { X}, Algorithm 2.1 labels the edges as shown. Reachable nodes are shaded.

An Algorithm for Finding d-Separations

We will develop an algorithm that finds the set of all nodes d-separated from
one set of nodes B by another set of nodes A. To accomplish this, we will first
find every node X such that there is at least one active chain given A between X
and a node in B. This latter task can be accomplished by solving the following
more general problem first. Suppose we have a directed graph (not necessarily
acyclic), and we say that certain edges cannot appear consecutively in our paths
of interest. That is, we identify certain ordered pairs of edges (U — V.V — W)
as legal and the remaining as illegal. We call a path legal if it does not contain
any illegal ordered pairs of edges, and we say Y is reachable from X if there
is a legal path from X to Y. Note that we are looking only for paths; we are
not looking for chains that are not paths. We can find the set R of all nodes
reachable from X as follows: We note that any node V such that the edge
X — V exists is reachable. We label each such edge with a 1, and add each
such V to R. Next for each such V', we check all unlabeled edges V' — W and
see if (X — V,V — W) is a legal pair. We label each such edge with a 2 and
we add each such W to R. We then repeat this procedure with V' taking the
place of X and W taking the place of V. This time we label the edges found
with a 3. We keep going in this fashion until we find no more legal pairs. This
is similar to a breadth-first graph search except we are visiting links rather than
nodes. In this way, we may investigate a given node more than once. Of course,
we want to do this because there may be a legal path through a given node
even though another edge reaches a dead-end at the node. Figure 2.7 illustrates
this method. The algorithm that follows, which is based on an algorithm in
[Geiger et al, 1990a], implements it.
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Before giving the algorithm, we discuss how we present algorithms. We
use a very loose C++ like pseudocode. That is, we use a good deal of simple
English description, we ignore restrictions of the C++ language such as the
inability to declare local arrays, and we freely use data types peculiar to the
given application without defining them. Finally, when it will only clutter rather
than elucidate the algorithm, we do not define variables. Our purpose is to
present the algorithm using familiar, clear control structures rather than adhere
to the dictates of a programming language.

Algomthm 2.1 Find Reachable Nodes

Problem: Given a directed graph and a set of legal ordered pairs of edges,
determine the set of all nodes reachable from a given set of nodes.

Inputs: a directed graph G = (V, E), a subset B C V, and a rule for determin-
ing whether two consecutive edges are legal.

Outputs: the subset R C V of all nodes reachable from B.

void find_reachable_nodes (directed graph G = (V,E),
set-of-nodes B,
set-of-nodes& R)

{
for (each X € B) {

add X to R;

for (each V such that the edge X — V exists) {
add V to R;
label X — V with 1;

}
}
1 =1;
found = true;
while (found) {
found = false;
for (each V such that U — V is labeled 1)
for (each unlabeled edge V- — W
such that (U — V.,V — W) is legal) {
add W to R;
label V. — W with i + 1;
found = true;
}
1=141;
}
}
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Geiger at al [1990b] proved Algorithm 2.1 is correct. We analyze it next.
Analysis of Algorithm 2.1 (Find Reachable Nodes)

Let n be the number of nodes and m be the number of edges. In
the worst case, each of the nodes can be reached from n entry points
(Note that the graph is not necessarily a DAG; so there can be
edge from a node to itself.). Each time a node is reached, an edge
emanating from it may need to be re-examined. For example, in
Figure 2.7 the edge S — V is examined twice. This means each
edge may be examined n times, which implies the worst-case time
complexity is the following:

W(m,n) € (mn).

Next we address the problem of identifying the set of nodes D that are d-
separated from B by A in a DAG G = (V,E). First we will find the set R such
that Y € R if and only if either Y € B or there is at least one active chain given
A between Y and a node in B. Once we find R, D =V — (AUR).

If there is an active chain p between node X and some other node, then
every 3-node subchain U — V — W of p has the following property: Either

1. U -V — W is not head-to-head at V" and V is not in A; or
2. U —V — W is head-to-head at V and V is or has a descendent in A.

Initially we may try to mimic Algorithm 2.1. We say we are mimicking Algorithm
2.1 because now we are looking for chains that satisfy certain conditions; we are
not restricting ourselves to paths as Algorithm 2.1 does. We mimic Algorithm
2.1 as follows: We call a pair of adjacent links (U — V,V — W) legal if and
only if U — V — W satisfies one of the two conditions above. Then we proceed
from X as in Algorithm 2.1 numbering links and adding reachable nodes to R.
This method finds only nodes that have an active chain between them and X,
but it does not always find all of them. Consider the DAG in Figure 2.8 (a).
Given A is the only node in A and X is the only edge in B, the edges in that
DAG are numbered according to the method just described. The active chain
X — A« 7Z «— T <Y ismissed because the edge T' — Z is already numbered
by the time the chain A «— Z « T is investigated, which means the chain
Z «— T « Y is never investigated. Since this is the only active chain between
X and Y, Y is not be added to R.

We can solve this problem by creating from G = (V, E) a new directed graph
G’ = (V,E’), which has the links in G going in both directions. That is,

E'=EU{U — V such that V — U € E}

We then apply Algorithm 2.1 to G’ calling (U — V.,V — W) legal in G’ if
and only if U —V — W satisfies one of the two conditions above in G. In this
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(@) (b)

Figure 2.8: The directed graph G’ in (b) is created from the DAG G in (a) by
making each link go in both directions. The numbering of the edges in (a) is
the result of applying a mimic of Algorithm 2.1 to G, while the numbering of
the edges in (b) is the result of applying Algorithm 2.1 to G'.

way every active chain between X and Y in G has associated with it a legal
path from X to Y in G’, and will therefore not be missed. Figure 2.8 (b)
shows G’, when G is the DAG in Figure 2.8 (a), along with the edges numbered
according to this application of Algorithm 2.1. The following algorithm, taken
from [Geiger et al, 1990a], implements the method.

Algomthm 2.2 Find d-Separations

Problem: Given a DAG, determine the set of all nodes d-separated from one
set of nodes by another set of nodes.

Inputs: a DAG G = (V,E) and two disjoint subsets A,B C V.

Outputs: the subset D C V containing all nodes d-separated from every node
in B by A. That is, I(B, D|A) holds and no superset of D has this property.

void find _d_separations (DAG G = (V,E),
set-of-nodes A, B,
set-of-nodes& D)

DAG G’ = (V,E);



2.1. ENTAILED CONDITIONAL INDEPENDENCIES

for (each V € V) {
if (V€A
in[V] = true;
else
in[V] = false;
if (V is or has a descendent in A)
descendent[V] = true;
else
descendent[V] = false;
}

E'=EU{U — V such that V — U € E};

// Call Algorithm 2.1 as follows:

find_reachable _nodes(G' = (V,E'),B,R);

// Use this rule to decide whether (U — V,V — W) is legal in G':
// The pair (U — V,V — W) is legal if and only if U # W

// and one of the following hold:

// 1) U —V —W is not head-to-head in G and in[V] is false;

//2) U -V —W is head-to-head in G and descendent[V] is true.
D=V - (AUR); // We do not need to remove B because B C R.

Next we analyze the algorithm:

Analysis of Algorithm 2.2 (Find d-Separations)

Although Algorithm 2.1’s worst case time complexity is in 8(mn),
where n is the number of nodes and m is the number of edges,
we will show this application of it requires only 6(m) time in the
worst case. We can implement the construction of descendent|[V]
as follows. Initially set descendent[V] = true for all nodes in A.
Then follow the incoming edges in A to their parents, their parents’
parents, and so on, setting descendent[V] = true for each node found
along the way. In this way, each edge is examined at most once, and
so the construction requires 6(m) time. Similarly, we can construct
in[V] in 8(m) time.

Next we show that the execution of Algorithm 2.1 can also be done
in O(m) time (assuming m > n). To accomplish this, we use the
following data structure to represent G. For each node we store a
list of the nodes that point to that node. For example, this list for
node T in Figure 2.8 (a) is {X,Y}. Call this list the node’s inlist.
We then create an outlist for each node, which contains all the
node’s to which a node points. For example, this list for node X in
Figure 2.8 (a) is {4, T'}. Clearly, these lists can be created from the
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inlists in #(m) time. Now suppose Algorithm 2.1 is currently trying
to determine for edge U — V in G’ which pairs (U — V,V — W)
are legal. We simply choose all the nodes in V'’s inlist or outlist or
both according to the following pseudocode:

if U—-VinG){ // U points to V in G.
if (descendent[V] == true)
choose all nodes W in V'’s inlist;
if (in[V] == false)
choose all nodes W in V’s outlist;
}

else { // V points to U in G.
if (in[V] == true)
choose no nodes;
else choose all nodes W in V’s inlist and in Vs outlist;

}

So for each edge U — V in G’ we can find all legal pairs (U —
V.,V — W) in constant time. Since Algorithm 2.1 only looks for
these legal pairs at most once for each edge U — V, the algorithm
runs in 6(m) time.

Next we prove the algorithm is correct.

Theorem 2.2 The set D returned by Algorithm 2.2 contains all and only nodes
d-separated from every node in B by A. That is, we have Ig(B,D|A) and no
superset of D has this property.

Proof. The set R determined by the algorithm contains all nodes in B (because
Algorithm 2.1 initially adds nodes in B to R) and all nodes reachable from B
via a legal path in G'. For any two nodes X € B and Y ¢ AUB, the chain
X — - =Y is active in G if and only if the path X — --- —Y s legal in G'.
Thus R contains the nodes in B plus all and only those nodes that have active
chains between them and a node in B. By the definition of d-separation, a node
is d-separated from every node in B by A if the node is not in AUB and there
s no active chain between the node and a node in B. Thus D =V — (AUR) is
the set of all nodes d-separated from every node in B by A.

An Application

In general, the inference problem in Bayesian networks is to determine P(BJA),
where A and B are two sets of variables. In the application of Bayesian networks
to decision theory, which is discussed in Chapter 5, we are often interested in
determining how sensitive our decision is to each parameter in the network
so that we do not waste effort trying to refine values which do not affect the
decision. This matter is discussed more in [Shachter, 1988]. Next we show how
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° P(x1| p,) = p,
P(x2| p,) = 1-p,

Figure 2.9: Py is a variable whose possible values are the probabilities we may

assign to 1.

Figure 2.10: A DAG.

Algorithm 2.2 can be used to determine which parameters are irrelevant to a
given computation.

Suppose variable X has two possible value x1 and 22, and we have not yet
ascertained P(x). We can create a variable Px whose possible values lie in the
interval [0, 1], and represent P(X = z) using the Bayesian network in Figure 2.9.
In Chapter 6 we will discuss assigning probabilities to the possible values of P,
in the case where the probabilities are relative frequencies. In general, we can
represent the possible values of the parameters in the conditional distributions
associated with a node using a set of auxiliary parent nodes. Figure 2.11 shows
one such parent node for each node in the DAG in Figure 2.10. In general, each
node can have more than one auxiliary parent node, and each auxiliary parent
node can represent a set of random variables. However, this is not important to
our present discussion; so we show only one node representing a single variable
for the sake of simplicity. You are referred to Chapters 6 and 7 for the details
of this representation. Let G” be the DAG obtained from G by adding these
auxiliary parent nodes, and let P be the set of auxiliary parent nodes. Then to
determine which parameters are necessary to the calculation of P(BJA) in G,
we need only first use Algorithm 2.1 to determine D such that Ig~ (B, D|A) and
no superset of D has this property, and then take D N P.
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Figure 2.11: Each shaded node is an auxiliary parent node representing possible
values of the parameters in the conditional distributions of the child.

Example 2.4 Let G be the DAG in Figure 2.10. Then G" is as shown in Figure
2.11. To determine P(f) we need ascertain all and only the values of Py, Pg,
Py, and Pg because we have Ig/({F},{Px}), and Px is the only auxiliary
parent variable d-separated from {F} by the empty set. To determine P(f|b)
we need ascertain all and only the values of Py, Pr, and Pr because we have
Ig({F},{Pg, Px }|{B}), and Pg and Px are the only auziliary parent variables
d-separated from {F} by {B}. To determine P(f|b,x) we need ascertain all and
only the values of Py, Pr, Pr, and Py, because Igr({F},{Pp}{B,X}), and
Pg is the only auziliary parent variables d-separated from {F'} by {B,X}.

It is left as an exercise to write an algorithm implementing the method just
described.

2.2 Markov Equivalence

Many DAGs are equivalent in the sense that they have the same d-separations.
For example, each of the DAGs in Figure 2.12 has the d-separations Ig({Y'},{Z}|
{X})and Ic({X}, {W}| {Y, Z}), and these are the only d-separations each has.
After stating a formal definition of this equivalence, we give a theorem showing
how it relates to probability distributions. Finally, we establish a criterion for
recognizing this equivalence.

Definition 2.7 Let Gy = (V,E;) and Go = (V,Ey) be two DAGs containing
the same set of variables V. Then Gy and Gy are called Markov equivalent
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Figure 2.12: These DAGs are Markov equivalent, and there are no other DAGs
Markov equivalent to them.

if for every three mutually disjoint subsets A,B,C C V, A and B are d-separated
by C in Gy if and only if A and B are d-separated by C in Go. That is

IG1 (Aa B|C) <~ IGz (Aa B|C)

Although the previous definition has only to do with graph properties, its
application is in probability due to the following theorem:

Theorem 2.3 Two DAGs are Markov equivalent if and only if, based on the
Markov condition, they entail the same conditional independencies.
Proof. The proof follows immediately from Theorem 2.1.

Corollary 2.1 Let Gy = (V,E;) and Go = (V, E3) be two DAGs containing the
same set of variables V. Then G1 and Go are Markov equivalent if and only if
for every probability distribution P of V, (Gy, P) satisfies the Markov condition
if and only if (G, P) satisfies the Markov condition.

Proof. The proof is left as an exercise.

Next we develop a theorem that shows how to identify Markov equivalence.
Its proof requires the following three lemmas:

Lemma 2.4 Let G = (V,E) be a DAG and X,Y € V. Then X and Y are
adjacent in G if and only if they are not d-separated by some set in G.

Proof. Clearly, if X andY are adjacent, no set d-separates them as no set can
block the chain consisting of the edge between them.

In the other direction, suppose X andY are not adjacent. Fither there is no
path from X to'Y or there is no path fromY to X for otherwise we would have
a cycle. Without loss of generality, assume there is no path from Y to X. We
will show that X and Y are d-separated by the set PAy consisting of all parents
of Y. Clearly, any chain p between X and Y, such that the edge incident to Y
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has its head at Y, is blocked by PAy. Consider any chain p between X and Y
such that the edge incident to 'Y has its tail at' Y. There must be a head-to-head
meeting on p because otherwise it would be path from Y to X. Consider the
head-to-head node Z closest to'Y on p. The node Z cannot be a parent of Y
because otherwise we would have a cycle. This implies p is blocked by PAy,
which completes the proof.

Corollary 2.2 Let G = (V,E) be a DAG and X,Y € V. Then if X and Y are
d-separated by some set, they are d-separated either by the set consisting of the
parents of X or the set consisting of the parents of Y.

Proof. The proof follows from the proof of Lemma 2.4.

Lemma 2.5 Suppose we have a DAG G = (V,E) and an uncoupled meeting
X — Z =Y. Then the following are equivalent:

1. X — Z —Y 1s a head-to-head meeting.
2. There exists a set not containing Z that d-separates X and Y .

3. All sets containing Z do not d-separate X and Y .

Proof. We will show1 = 2= 3= 1.

Show 1 = 2: Suppose X — Z —Y is a head-to-head meeting. Since X andY
are not adjacent, Lemma 2.4 says some set d-separates them. If it contained Z,
it would not block the chain X — Z — Y, which means it would not d-separate
X and Y. So it does not contain Z.

Show 2 = 3: Suppose there exists a set A not containing Z that d-separates
X and Y. Then the meeting X — Z —Y must be head-to-head because otherwise
the chain X — Z — Y would not be blocked by A. However, this means any set
containing Z does not block X — Z —Y and therefore does not d-separate X and
Y.

Show 3 = 1: Suppose X — Z —Y is not a head-to-head meeting. Since X
and 'Y are not adjacent, Lemma 2.4 says some set d-separates them. That set
must contain Z because it must block X — Z —Y . So it is not the case that all
sets containing Z do not d-separate X andY .

Lemma 2.6 If G; and G are Markov equivalent, then X and Y are adjacent
in Gy if and only if they are adjacent in Go. That is, Markov equivalent DAGs
have the same links (edges without regard for direction).

Proof. Suppose X and Y are adjacent in Gy. Lemma 2.4 implies they are
not d-separated in Gi by any set. Since Gy and Go are Markov equivalent, this
means they are not d-separated in Gy by any set. Lemma 2.4 therefore implies
they are adjacent in Go. Clearly, we have the same proof with the roles of G
and Gy reversed. This proves the lemma.

We now give the theorem that identifies Markov equivalence. This theorem
was first stated in [Pearl et al, 1989).
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Theorem 2.4 Two DAGs G1 and Gy are Markov equivalent if and only if they
have the same links (edges without regard for direction) and the same set of
uncoupled head-to-head meetings.

Proof. Suppose the DAGSs are Markov equivalent. Lemma 2.6 says they have
the same links. Suppose there is an uncoupled head-to-head meeting X — Z «—
Y in Gi. Lemma 2.5 says there is a set not containing Z that d-separates X
and Y in Gi. Since Gy and Gy are Markov equivalent, this means there is a set
not containing Z that d-separates X andY in Go. Again applying Lemma 2.5,
we conclude X — Z —Y is an uncoupled head-to-head meeting in G.

In the other direction, suppose two DAGs G1 and Go have the same links
and the same set of uncoupled head-to-head meetings. The DAGs are equivalent
if two nodes X and 'Y are not d-separated in Gi by some set A C V if and only
if they are not d-separated in Go by A. Without loss of generality, we need only
show this implication holds in one direction because the same proof can be used
to go in the other direction. If X and Y are not d-separated in Gy by A, then
there is at least one active chain (given A) between X and Y in Gy. If there
is an active chain between X and Y in Go, then X and Y are not d-separated
in Go by A. So we need only show the existence of an active chain between X
and Y in Gy implies the existence of an active chain between X and Y in Go.
To that end, let N =V — A, label all nodes in N with an N, let p; be an active
chain in Gy, and let p, be the chain in Gy consisting of the same links. If py
is not active, we will show that we can create a shorter active chain between X
and Y in Gi. In this way, we can keep creating shorter active chains between
X andY in Gy until the corresponding chain in Go is active, or until we create
a chain with no intermediate nodes between X and Y in Gy. In this latter case,
X and Y are adjacent in both DAGSs, and the direct link between them is our
desired active chain in Go. Assuming py is not active, we have two cases:

CASE 1: There is at least one node A € A responsible for p, being blocked. That
is, there is a head-to-tail or tail-to-tail meeting at A on py. There must be a
head-to-head meeting at A on p; because otherwise p; would be blocked. Since
weve assumed the DAGs have the same set of uncoupled head-to-head meetings,
this means there must be an edge connecting the nodes adjacent to A in the
chains. Furthermore, these nodes must be in N because there is not a head-to-
head meeting at either of them on py. This is depicted in Figure 2.18 (a). By
way of induction, assume we have sets of consecutive nodes in N on the chains
on both sides of A, the nodes all point towards A on p,, and there is an edge
connecting the far two nodes N' and N in these sets. This situation is depicted
in Figure 2.13 (b). Consider the chain o1 in Gy between X and Y obtained by
using this edge to take a shortcut N'—N" in p; around A. If there is not a
head-to-head meeting on o1 at N’ (Note that this includes the case where N' is
X.), o1 is not blocked at N'. Similarly, if there is not a head-to-head meeting on
o1 at N”, o1 is not blocked at N”'. If o1 is not blocked at N’ or N"', we are done
because o1 is our desired shorter active chain. Suppose there is a head-to-head
meeting at one of them in o1. Clearly, this could happen at most at one of them.
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Without loss of generality, say it is at N”'. This implies N Y, which means
there is a node to the right (closer to Y ) on the chain. Consider the chain oo
in Gy consisting of the same links as o1. There are two cases:

1. There is not a head-to-head meeting on oo at N”. Consider the node
to the right of N on the chains. This node cannot be in A because it
points towards N” on p,. We have therefore created a new instance of
the situation depicted in Figure 2.13 (b), and in this instance the node
corresponding to N is closer on py to Y. This is depicted in Figure 2.13
(c). Inductively, we must therefore eventually arrive at an instance where
either 1) there is not a head-to-head meeting at either side in Gy (that is,
at the nodes corresponding to N' and N” on the chain corresponding to
o1). This would at least happen when we reached both X and Y ; or 2)
there are head-to-head meetings on the same side in both Gy and Go. In
the former situation we have found our shorter active path in G1, and in
the latter we have the second case:

2. There is also a head-to-head meeting on oo at N”. It is left as an exer-
cise to show that in this case there must be a head-to-head meeting at a
node N* € N somewhere between N' and N" (including N") on p,, and
there cannot be a head-to-head meeting at N* on p; (Recall and p, is not
blocked.). Therefore, there must be an edge connecting the nodes on either
side of N*. Without loss of generality, assume N* is between A and Y .
The situation is then as depicted in Figure 2.13 (d). We have not labeled
the node to the left of N* because it could be but is not necessarily A. The
direction of the edge connecting the nodes on either side of N* on p; must
be towards A because otherwise we would have a cycle. When we take a
shortcut around N*, the node on N*’s right still has an edge leaving it
from the left and the node on N*’s left still has an edge coming into it
from the right. So this shortcut cannot be blocked in Gy at either of these
nodes. Therefore, this shortcut must result in a shorter active chain in
G.

CASE 2: There are no nodes in A responsible for p, being blocked. Then there
must be at least one node N' € N responsible for p, being blocked, which means
there must be a head-to-head meeting on py at N'. Since p, is not blocked,
there is not a head-to-head meeting on p; at N'. Since we’ve assumed the two
DAGSs have the same set of uncoupled head-to-head meetings, this means the
nodes adjacent to N’ on the chains are adjacent to each other. Since there is a
head-to-head meeting on p, at N', there cannot be a head-to-head meeting on py
at either of these nodes (the ones adjacent to N' on the chains). These nodes
therefore cannot be in A because we’ve assumed no nodes in A are responsible
for py being blocked. Since py is not blocked, we cannot have a head-to-head
meeting on p; at a node in N. Therefore, the only two possibilities (aside from
symmetrical ones) in Gy are the ones depicted in Figures 2.14 (a) and (b).
Clearly, in either case by taking the shortcut around N', we have a shorter
actiwe chain in Gy.
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Figure 2.13: The figure used to prove Case 1 in Theorem 2.4.
(a) (b)

Figure 2.14: In either case, taking the shortcut around N’ results in a shorter
active chain in Gy.
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Figure 2.15: The DAGs in (a) and (b) are Markov equivalent. The DAGs in (c)
and (d) are not Markov equivalent to the first two DAGs or to each other.
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Example 2.5 The DAGs in Figure 2.15 (a) and (b) are Markov equivalent
because they have the same links and the only uncoupled head-to-head meeting
in both is X — Z «— Y. The DAG in Figure 2.15 (¢) is not Markov equivalent
to the first two because it has the link W —Y. The DAG in Figure 2.15 (d) is
not Markov equivalent to the first two because, although it has the same links,
it does not have the uncoupled head-to-head meeting X — Z «— Y. Clearly, the
DAGs in Figure 2.15 (¢) and (d) are not Markov equivalent to each other either.

It is straightforward that Theorem 2.4 enables us to develop a polynomial-
time algorithm for determining whether two DAGs are Markov equivalent. We
simply check if they have the same links and uncoupled head-to-head meetings.
It is left as an exercise to write such an algorithm.

Furthermore, Theorem 2.4 gives us a simple way to represent a Markov
equivalence class with a single graph. That is, we can represent a Markov
equivalent class with a graph that has the same links and the same uncoupled
head-to-head meeting as the DAGs in the class. Any assignment of directions to
the undirected edges in this graph, that does not create a new uncoupled head-
to-head meeting or a directed cycle, yields a member of the equivalence class.
Often there are edges other than uncoupled head-to-head meetings which must
be oriented the same in Markov equivalent DAGs. For example, if all DAGs in
a given Markov equivalence class have the edge X — Y, and the uncoupled
meeting X — Y — Z is not head-to-head, then all the DAGs in the equivalence
class must have Y — Z oriented as Y — Z. So we define a DAG pattern for a
Markov equivalence class to be the graph that has the same links as the DAGs
in the equivalence class and has oriented all and only the edges common to all
of the DAGs in the equivalence class. The directed links in a DAG pattern
are called compelled edges. The DAG pattern in Figure 2.16 represents the
Markov equivalence class in Figure 2.12. The DAG pattern in Figure 2.17 (b)
represents the Markov equivalent class in Figure 2.17 (a). Notice that no DAG
Markov equivalent to each of the DAGs in Figure 2.17 (a) can have W — U
oriented as W «— U because this would create another uncoupled head-to-head
meeting.

Since all DAGs in the same Markov equivalence class have the same d-
separations, we can define d-separation for DAG patterns:

Definition 2.8 Let gp be a dag pattern whose nodes are the elements of V, and
A, B, and C be mutually disjoint subsets of V. We say A and B are d-separated
by C in gp if A and B are d-separated by C in any (and therefore every) DAG
G in the Markov equivalence class represented by gp.

Example 2.6 For the DAG pattern gp in Figure 2.16 we have
I, ({Y}AZ3{XY)
because {Y'} and {Z} are d-separated by {X} in the DAGs in Figure 2.12.

The following lemmas follow immediately from the corresponding lemmas
for DAGs:
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Figure 2.16: This DAG pattern represents the Markov equivalence class in Fig-
ure 2.12.

Lemma 2.7 Let gp be DAG and X andY be nodes in gp. Then X and Y are
adjacent in gp if and only if they are not d-separated by some set in gp.

Proof. The proof follows from Lemma 2./.

Lemma 2.8 Suppose we have a DAG pattern gp and an uncoupled meeting
X — Z =Y. Then the following are equivalent:

1. X — Z —Y 1s a head-to-head meeting.
2. There exists a set not containing Z that d-separates X and Y .

3. All sets containing Z do not d-separate X and Y .
Proof. The proof follows from Lemma 2.5.

Owing to Corollary 2.1, if G is an independence map of a probability distri-
bution P (i.e. (G, P) satisfies the Markov condition), then every DAG Markov
equivalent to G is also an independence map of P. In this case, we say the DAG
pattern gp representing the equivalence class is an independence map of P.

2.3 Entailing Dependencies with a DAG

As noted at the beginning of this chapter, the Markov condition only entails
independencies; it does not entail any dependencies. As a result, many unin-
formative DAGs can satisfy the Markov condition with a given distribution P.
The following example illustrates this.

Example 2.7 Let Q) be the set of objects in Figure 1.2, and let P, V, S, and C
be as defined in Example 1.25. That is, P assigns a probability of 1/13 to each
object, and random variables V', S, and C are defined as follows:
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(b)

Figure 2.17: The DAG pattern in (b) represents the Markov equivalence class
in (a).
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Figure 2.18: The probability distribution in Example 2.4 satisfies the Markov
condition with each of these DAGs.

Variable | Value | Outcomes Mapped to this Value
1% vl All objects containing a ‘1’
v2 All objects containing a 2’
S sl All square objects
52 All round objects
C cl All black objects
2 All white objects

Then, as shown in Example 1.25, P satisfies the Markov condition with the
DAG in Figure 2.18 (a) because Ip({V},{S}{C}). However, P also satisfies
the Markov condition with the DAGs in Figures 2.18 (b) and (c) because the
Markov condition does not entail any independencies in the case of these DAGS.
This means that not only P but every probability distribution of V', S, and C
satisfies the Markov condition with each of these DAGs.

The DAGs in Figures 2.18 (b) and (c¢) are complete DAGs. Recall that a
complete DAG G = (V,E) is one in which there is an edge between every
pair of nodes. That is, for every X,Y € V, either (X,Y) € E or (Y,X) € E.
In general, the Markov condition entails no independencies in the case of a
complete DAG G = (V, E), which means (G, P) satisfies the Markov condition
for every probability distribution P of the variables in V. We see then that
(G, P) can satisfy the Markov condition without G telling us anything about P.

Given a probability distribution P of the variables in some set V and X, Y €
V, we say there is a direct dependency between X and Y in P if {X} and
{Y'} are not conditionally independent given any subset of V. The problem
with the Markov condition alone is that it entails that the absence of an edge
between X any Y means there is no direct dependency between X any Y, but
it does not entail that the presence of an edge between X and Y means there
is a direct dependency. That is, if there is no edge between X and Y, Lemmas
2.4 and 2.1 together tell us the Markov condition entails {X} and {Y} are
conditionally independent given some set (possibly empty) of variables. For
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example, in Figure 2.18 (a), because there is no edge between V and C, we
know from Lemma 2.4 they are d-separated by some set. It turns out that set
is {C}. Lemma 2.1 therefore tells us Ip({V},{S}{C}). On the other hand, if
there is an edge between X and Y, the Markov condition does not entail that
{X} and {Y'} are not conditionally independent given some set of variables. For
example, in Figure 2.18 (b), the edge between V and S does not mean that {V'}
and {S} are not conditionally independent given some set of variables. Indeed,
we know they actually are.

2.3.1 Faithfulness

In general, we would want an edge to mean there is a direct dependency. As we
shall see, the faithfulness condition entails this. We discuss it next.

Definition 2.9 Suppose we have a joint probability distribution P of the ran-
dom variables in some setV and a DAG G = (V,E). We say that (G, P) satisfies
the faithfulness condition if, based on the Markov condition, G entails all
and only conditional independencies in P. That is, the following two conditions

hold:

1. (G, P) satisfies the Markov condition (This means G entails only condi-
tional independencies in P.).

2. All conditional independencies in P are entailed by G, based on the Markov
condition.

When (G, P) satisfies the faithfulness condition, we say P and G are faithful
to each other, and we say G is a perfect map of P. When they do not, we say
they are unfaithful to each other.

Example 2.8 Let P and V', S, and C be as in Example 2.7. Then, as shown
in Example 1.25, Ip({V}, {S}H{C?}), which means (G, P) satisfies the Markov
condition if G is the DAG in Figure 1.8 (a), (b), or (¢). Those DAGs are shown
again in Figure 2.19. It is left as an exercise to show that there are no other
conditional independencies in P. That is, you should show

Ip({V}A{S}) Ip({V},{CI{S})
Tp({V3{C}) Tp({C}{SHVE)
Ip({S5}{CY).

(It is not necessary to show, for example, "Ip({V},{S,C}) because the first
non-independency listed above implies this one.) Therefore, (G, P) satisfies the

faithfulness condition if G is any one of the DAGs in Figure 2.19.

The following theorems establish a criterion for recognizing faithfulness:
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Figure 2.19: The probability distribution in Example 2.7 satisfies the faithful-
ness condition with each of the DAGs in (a), (b), and (c¢), and with the DAG
pattern in (d).

Theorem 2.5 Suppose we have a joint probability distribution P of the random
variables in some set V and a DAG G = (V,E). Then (G, P) satisfies the
faithfulness condition if and only if all and only conditional independencies in
P are identified by d-separation in G.

Proof. The proof follows immediately from Theorem 2.1.

Example 2.9 Consider the Bayesian network (G, P) in Figure 2.6, which is
shown again in Figure 2.20. As noted in the discussion following Theorem 2.1,
for that network we have Ip({X},{Z}) but not Ic({ X },{Z}). Therefore, (G, P)
does not satisfy the faithfulness condition.

We made very specific conditional probability assignments in Figure 2.20 to

develop a distribution that is unfaithful to the DAG in that figure. If we just
arbitrarily assign conditional distributions to the variables in a DAG, are we

()

P(x1) =a Pylx1)=1-(b+c) P(zllyl) =e
P(x2) =1-a P(y2|x1) =c P(z2lyl)=1-e
P(y3|x1)=b
P(zlly2) =e
Py1|x2) =1- (b +d) P(z2ly2)=1-e
P(y2|x2) =d
P(y3|x2) =b P(z1ly3) =f
P(z2ly3)=1-f

Figure 2.20: For this (G, P), we have Ip({X},{Z}) but not Is({X},{Z}).
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likely to end up with a joint distribution that is unfaithful to the DAG? The
answer is no. A theorem to this effect in the case of linear models appears in
[Spirtes et al, 1993, 2000]. In a linear model, each variable is a linear function
of its parents and an error variable. In this case, the set of possible conditional
probability assignments to some DAG is a real space. The theorem says that
the set of all points in this space, that yield distributions unfaithful to the DAG,
form a set of Lebesgue measure zero. Intuitively, this means that almost all such
assignments yield distributions faithful to the DAG. Meek [1995a] extends this
result to the case of discrete variables.

The following theorem obtains the result that if P is faithful to some DAG,
then P is faithful to an equivalence class of DAGs:

Theorem 2.6 If (G, P) satisfies the faithfulness condition, then P satisfies this
condition with all and only those DAGs that are Markov equivalent to G. Fur-
thermore, if we let gp be the DAG pattern corresponding to this Markov equiv-
alence class, the d-separations in gp identify all and only conditional indepen-
dencies in P. We say that gp and P are faithful to each other, and gp is a
perfect map of P.

Proof. The proof follows immediately from Theorem 2.5.

We say a distribution P admits a faithful DAG representation if P
is faithful to some DAG (and therefore some DAG pattern). The distribution
discussed in Example 2.8 admits a faithful DAG representation. Owing to the
previous theorem, if P admits a faithful DAG representation, there is a unique
DAG pattern with which P is faithful. In general, our goal is to find that DAG
pattern whenever P admit a faithful DAG representation. Methods for doing
this are discussed in Chapters 8-11. Presently, we show not every P admits a
faithful DAG representation.

Example 2.10 Consider the Bayesian network in Figure 2.20. As mentioned
in Example 2.9, the distribution in that network has these independencies:

Ip({X}1 {2} Ip({X}AZI{Y D).

Suppose we specify values to the parameters so that these are the only indepen-
dencies, and some DAG G is faithful to the distribution (Note that G is not
necessarily the DAG in Figure 2.20.). Due to Theorem 2.5, G has these and
only these d-separations:

le({X}1 {2} (X} AZI{YD).

Lemma 2.4 therefore implies the links in G are X =Y and Y — Z. This means
X =Y — Z is an uncoupled meeting. Since Ig({X},{Z}), Condition (2) in
Lemma 2.5 holds. This lemma therefore implies its Condition (3) holds, which
means we cannot have Ic({ X}, {Z}{Y}). This contradiction shows there can
be no such DAG.
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Figure 2.21: If P satisifies the faithfulness condition with the DAG in (a), the
marginal distribution of V', S, L, and F' cannot satisfy the faithfulness with any
DAG. There would have to be arrows going both ways between V' and S. This
is depicted in (b).

Example 2.11 Suppose we specify conditional distributions for the DAG in
Figure 2.21 (a) so that the resultant joint distribution P(v,s,c,l, f) satisfies the
faithfulness condition with that DAG. Then the only independencies involving
only the variables V', S, L, and F are the following:

IP({L}’{F’ S}) IP({L}’{S}) IP({L}’ {F}) (2'2)
Ip({F},{L,V})  Ip({F}{V]).

Consider the marginal distribution P(v,s,,l, ) of P(v,s,c,l, f). We will show
this distribution does not admit a faithful DAG representation. Due to Theorem
2.5, if some DAG G was faithful to that distribution, it would have these and
only these d-separations involving only the nodes V', S, L, and F':

Ie({LHL{F S Ie({L}A{SY)  Ie({L}.{F})
IG({F}’{L’V}) I(G({F}a{v})

Due to Lemma 2.4, the links in G are therefore L—V,V — S, and S — F. This
means L —V — S is an uncoupled meeting. Since Ig({L},{S}), Lemma 2.5
therefore implies it is an uncoupled head-to-head meeting. Similarly, V —S — F
is an uncoupled head-to-head meeting. The resultant graph, which is shown in
Figure 2.21 (b), is not a DAG. This contradiction shows P(v,s,l, ) does not
admit a faithful DAG representation. Ezxercise 2.20 shows an urn problem in
which four variables have this distribution.
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Pearl [1988] obtains necessary but not sufficient conditions for a probability
distribution to admit a faithful DAG representation.

Recall at the beginning of this subsection we stated that, in the case of
faithfulness, an edge between two nodes means there is a direct dependency
between the nodes. The theorem that follows obtains this result and more.

Theorem 2.7 Suppose we have a joint probability distribution P of the random
variables in some set V and a« DAG G = (V,E). Then if P admits a faithful
DAG representation, gp is the DAG pattern faithful to P if and only if the
following two conditions hold:

1. X and Y are adjacent in gp if and only if there is no subset S C V such
that Ip({X},{Y'}|S). That is, X and Y are adjacent if and only if there
is a direct dependency between X and Y .

2. X —Z =Y is a head-to-head meeting in gp if and only if Z € S implies
Up({X}AYHS).

Proof. Suppose gp is the DAG pattern faithful to P. Then due to Theorem 2.0,
all and only the independencies in P are identified by d-separation in gp, which
are the d-separations in any DAG G in the equivalence class represented by gp.
Therefore, Condition 1 follows Lemma 2.4, and Condition 2 follows from and
Lemma 2.5.

In the other direction, suppose Conditions (1) and (2) hold for gp and P.
Since we’ve assumed P admits a faithful DAG representation, there is some
DAG pattern gp’ faithful to P. By what was just proved, we know Conditions (1)
and (2) also hold for gp' and P. However, this mean any DAG G in the Markov
equivalence class represented by gp must have the same links and same set of
uncoupled head-to-head meetings as any DAG G’ in the Markov equivalence class
represented by gp’. Theorem 2.4 therefore says G and G’ are in the same Markov
equivalence class, which means gp = gp'.

2.3.2 Embedded Faithfulness

The distribution P(v, s,l, ) in Example 2.11 does not admit a faithful DAG rep-
resentation. However, it is the marginal of a distribution, namely P(v, s, ¢,l, f),
of one which does. This is an example of embedded faithfulness, which is defined
as follows:

Definition 2.10 Let P be a joint probability distribution of the variables in V
whereV C W, and G = (W, E) be a DAG. We say (G, P) satisfies the embedded
faithfulness condition if the following two conditions hold:

1. Based on the Markov condition, G entails only conditional independencies
in P for subsets including only elements of V.

2. All conditional independencies in P are entailed by G, based on the Markov
condition.
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When (G, P) satisfies the embedded faithfulness condition, we say P is em-
bedded faithfully in G. Notice that faithfulness is a special case of embedded
faithfulness in which W = V.

Example 2.12 Clearly, the distribution P(v,s,l, ) in Example 2.11 is embed-
ded faithfully in the DAG in Figure 2.21 (a).

As was done in the previous example, we often obtain embedded faithful-
ness by taking the marginal of a faithful distribution. The following theorem
formalizes this result:

Theorem 2.8 Let P be a joint probability distribution of the variables in W
with VC W, and G = (W,E). If (G, P) satisfies the faithfulness condition,
and P' is the marginal distribution of V, then (G, P") satisfies the embedded
faithfulness condition.

Proof. The proof is obvious. W

Definition 2.10 has only to do with independencies entailed by a DAG. It
says nothing about P being a marginal of a distribution of the variables in V.
There are other cases of embedded faithfulness. Example 2.14 shows one such
case. Before giving that example, we discuss embedded faithfulness further.

The following theorems are analogous to the corresponding ones concerning
faithfulness:

Theorem 2.9 Let P be a joint probability distribution of the variables in V with
VCW, and G = (W,E). Then (G, P) satisfies the embedded faithfulness con-
dition if and only if all and only conditional independencies in P are identified
by d-separation in G restricted to elements of V.

Proof. The proof is left as an exercise.

Theorem 2.10 Let P be a joint probability distribution of the variables in V
with V. C W, and G = (W,E). If (G, P) satisfies the embedded faithfulness
condition, then P satisfies this condition with all those DAGs that are Markov
equivalent to G. Furthermore, if we let gp be the DAG pattern corresponding to
this Markov equivalence class, the d-separations in gp, restricted to elements of
V, identify all and only conditional independencies in P. We say P is embedded
faithfully in gp.

Proof. The proof is left as an exercise.

Note that the theorem says ‘all those DAGS’, but, unlike the corresponding
theorem for faithfulness, it does not say ‘only those DAGs’. If a distribution can
be embedded faithfully, there are an infinite number of non-Markov equivalent
DAGs in which it can be embedded faithfully. Trivially, we can always replace
an edge by a directed linked list of new variables. Figure 2.22 shows a more
complex example. The distribution P(v,s,l, f) in Example 2.11 is embedded
faithfully in both DAGs in that figure. However, even though the DAGs contain
the same nodes, they are not Markov equivalent.
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Figure 2.22: Suppose the only conditional independencies in a probability dis-
tribution P of V, S, L, and F are those in Equality 2.2, which appears in
Example 2.11. Then P is embedded faithfully in both of these DAGs.

We say a probability distribution admits an embedded faithful DAG
representation if it can be embedded faithfully in some DAG. Does every
probability distribution admit an embedded faithful DAG representation? The
following example shows the answer is no.

Example 2.13 Consider the distribution in Example 2.10. Recall that it has
these and only these conditional independencies:

Ip({X},{2})  Ip({X}A{ZH{Y' D).

Example 2.10 showed this distribution does not admit a faithful DAG represen-
tation. We show next that it does not even admit an embedded faithful DAG
representation. Suppose it can be embedded faithfully in some DAG G. Due to
theorem 2.9, G must have these and only these d-separations among the variables

X, Y, and Z:
Ie({X}{2})  Le({X}{Z}{Y}).

There must be a chain between X and Y with no head-to-head meetings because
otherwise we would have Ig({ X },{Y'}). Similarly, there must be a chain between
Y and Z with no head-to-head meetings. Consider the resultant chain between X
and Z. If it had a head-to-head meeting at'Y , it would not be blocked by {Y'} be-
cause it does not have a head-to-head meeting at a node not in {Y'}. This means
if it had a head-to-head meeting at Y, we would not have Ic({X},{Z}{Y}).
If it did not have a head-to-head meeting at Y, there would be no head-to-head
meetings on it at all, which means it would not be blocked by @, and we would
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(a) (b)

Figure 2.23: The DAG in (a) includes distributions of X, Y, Z, and W which
the DAG in (b) does not.

therefore not have Ig({X},{Z}). This contradiction shows there can be no such
DAG.

We say P is included in DAG G if P is the probability distribution in a
Bayesian network containing G or P is the marginal of a probability distribution
in a Bayesian network containing G. When a probability distribution is faithful
to some DAG G, P is included in G by definition because the faithfulness
condition subsumes the Markov condition. In the case of embedded faithfulness,
things are not as simple. It is possible to embed a distribution P faithfully in
a DAG G without P being included in the DAG. The following example, taken
from [Verma and Pearl, 1991], shows such a case:

Example 2.14 Let V = {X,Y, Z, W} and W = {X,Y, Z,W,T}. The only d-
separation among the variables in V in the DAGs in Figures 2.23 (a) and (b),
is Ic({Z}, {X}H{Y'}). Suppose we assign conditional distributions to the DAG
in (a) so that the resultant joint distribution of W is faithful to that DAG. Then
the marginal distribution of V is faithfully embedded in both DAGs. The DAG
in (a) has the same edges as the one in (b) plus one more. So the DAG in (b)
has d-separations, (e.g. Io({W} {X}{Y,T}), which the one in (a) does not
have. We will show that as a result there are distributions which are embedded
faithfully in both DAGs but are only included in the DAG in (a).

To that end, for any marginal distribution P(v) of a probability distribution
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P(w) satisfying the Markov condition with the DAG in (b), we have
P(z,y,z,w) = Y P(w|zt)P(zly)P(y|z, ) P(x) P(t)
t

— P(ely)P(x) S Puwlz, ) Pyle, ) P(2).

Also, for any marginal distribution P(v) of a probability distribution P(w) sat-
isfying the Markov condition with the DAGSs in both figures, we have

P(wlz,y, 2) P(z|z,y) P(y|x)p(x)
Pwlz,y, 2)P(zly) P (y|x) P ().

P(:I:’ y’ Z’ w)

FEquating these two expressions and summing over y yields

Z P(w|z,y,z)P(y|lz) = Z P(w|z,t)P(t).

The left hand side of the previous expression contains the variable x, whereas the
right hand side does not. Therefore, for a distribution of V to be the marginal of
a distribution of W which satisfies the Markov condition with the DAG in (b),
the distribution of V must have the left hand side equal for all values of x. For
example, for all values of w and z it would need to have

S Plwlar, y, 2)P(yle) = 3 Plwlaa, y, 2) P(yla). (2.3)

Repeating the same steps as above for the DAG in (a), we obtain that for
any marginal distribution P(v) of a probability distribution P(w) satisfying the
Markov condition with that DAG, we have

Z P(w|z,y,z)P(y|lz) = Z P(w|z, z,t)P(t). (2.4)

Note that now the variable x appears on both sides of the equality. Suppose
we assign values to the conditional distributions in the DAG in (a) to obtain a
distribution P'(w) such that for some values of w and z

ZP’(w|x1, 2, ) P'(t) # ZP’(w|:1:2, 2, 0)P'(t).
t t
Then owing to Equality 2.4 we would have for the marginal distribution P’(v)
Zpl(wlxla Y, Z)Pl(y|$) # Zpl(wlea Y, Z)Pl(yliﬁ)

Y Y

However, Equality 2.3 says these two expressions must be equal if a distribution
of V is to be the marginal of a distribution of W which satisfies the Markov
condition with the DAG in (b). So the marginal distribution P’(v) is not the
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marginal of a distribution of W which satisfies the Markov condition with the
DAG in (b).

Suppose further that we have made conditional distribution assignments so
that P’(w) is faithful to the DAG (a). Then owing to the discussion at the
beginning of the example, P'(v) is embedded faithfully in the DAG (b). So we
have found a distribution of V which is embedded faithfully in the DAG in (b)
but is not included in it.

2.4 Minimality

Consider again the Bayesian network in Figure 2.20. The probability distribu-
tion in that network is not faithful to the DAG because it has the independency
Ip({X},{Z}) and the DAG does not have the d-separation Ig({X},{Z}). In
Example 2.10 we showed that it is not possible to find a DAG faithful to that
distribution. So the problem was not in our choice of DAGs. Rather it is inher-
ent in the distribution that there is no DAG with which it is faithful. Notice
that, if we remove either of the edges from the DAG in Figure 2.20, the DAG
ceases to satisfy the Markov condition with P. For example, if we remove the
edge X — Y, we have Ig({X},{Y, Z}) but not Ip({X},{Y,Z}). So the DAG
does have the property that it is minimal in the sense that we cannot remove
any edges without the Markov condition ceasing to hold. Furthermore, if we add
an edge between X and Z to form a complete graph, it would not be minimal in
this sense. Formally, we have the following definition concerning the property
just discussed:

Definition 2.11 Suppose we have a joint probability distribution P of the ran-
dom variables in some setV and a DAG G = (V,E). We say that (G, P) satisfies
the minimality condition if the following two conditions hold:

1. (G, P) satisfies the Markov condition.

2. If we remove any edges from G, the resultant DAG no longer satisfies the
Markov condition with P.

Example 2.15 Consider the distribution P in Example 2.7. The only condi-
tional independency is Ip({V},{S}H{C}). The DAG in Figure 2.18 (a) satisfies
the minimality condition with P because if we remove the edge C' — V we have
Ic({V},{C,S}), if we remove the edge C — S we have I({S},{C,V?}), and
neither of these independencies hold in P. The DAG in Figure 2.18 (b) does
not satisfy the minimality condition with P because if remove the edge V.— S,
the only new d-separation is Ig({V},{S}{C}), and this independency does hold
in P. Finally, the DAG in Figure 2.18 (c) does satisfy the minimality condi-
tion with P because no edge can be removed without creating a d-separation that
is nmot an independency in P. For example, if we remove V. — S, we have
Ic({V'},{S}), and this independency does not hold in P.
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The previous example illustrates that a DAG can satisfy the minimality
condition with a distribution without being faithful to the distribution. Namely,
the only DAG in Figure 2.18 that is faithful to P is the one in (a), but the
one in (c) also satisfies the minimality condition with P. On the other hand,
the reverse is not true. Namely, a DAG cannot be faithful to a distribution
without satisfying the minimality with the distribution. The following theorem
summarizes these results:

Theorem 2.11 Suppose we have a joint probability distribution P of the ran-
dom wvariables in some set V and a DAG G = (V,E). If (G, P) satisfies the
faithfulness condition, then (G, P) satisfies the minimality condition. However,
(G, P) can satisfy the minimality condition without satisfying the faithfulness
condition.

Proof. Suppose (G, P) satisfies the faithfulness condition and does not satisfy
the minimality condition. Since (G, P) does not satisfy the minimality condition.
some edge (X,Y) can be removed and the resultant DAG will still satisfy the
Markov condition with P. Due to Lemma 2.4, X and Y are d-separated by some
set in this new DAG and therefore, due to Lemma 2.1, they are conditionally
independent given this set. Since there is an edge between X and Y in G,
Lemma 2.4 implies X and Y are not d-separated by any set in G. Since (G, P)
satisfies the faithfulness condition, Theorem 2.5 therefore implies they are not
conditionally independent given any set. This contradiction proves faithfulness
implies minimality.

The probability distribution in Example 2.7 along with the DAG in Figure
2.18 (c) shows minimality does not imply faithfulness.

The following theorem shows that every probability distribution P satisfies
the minimality condition with some DAG and gives a method for constructing
one:

Theorem 2.12 Suppose we have a joint probability distribution P of the ran-
dom variables in some set V. Create an arbitrary ordering of the nodes in V. For
each X €V, let Bx be the set of all nodes that come before X in the ordering,
and let PAx be a minimal subset of Bx such that

Ip({X},Bx|PAx)

Create a DAG G by placing an edge from each node in PAx to X. Then (G, P)
satisfies the minimality condition. Furthermore, if P is strictly positive (That
1s, there are no probability values equal 0.), then PAx is unique relative to the
ordering.

Proof. The proof is developed in [Pearl, 1988].

Example 2.16 Suppose V. ={X,Y,Z, W} and P is a distribution that is faith-
ful to the DAG in Figure 2.24 (a). Then Figure 2.24 (b), (¢), (d), and (e) show
four DAGs satisfying the minimality condition with P obtained using the pre-
ceding theorem. The ordering used to obtain each DAG is from top to bottom
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(b) (©)

Figure 2.24: Four DAGs satisfying the minimality condition with P are shown
in (b), (¢), (d), and (e) given that P is faithful to the DAG in (a).

(d) (e)
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Figure 2.25: Two minimal DAG descriptions relative to the ordering [X,Y, Z]
when P(yl|zl) =1 and P(y2[z2) = 1.

as shown in the figure. If P is strictly positive, each of these DAGSs is unique
relative to its ordering.

Notice from the previous example that a DAG satisfying the minimality
condition with a distribution is not necessarily minimal in the sense that it
contains the minimum number of edges needed to include the distribution. Of
the DAGs in Figure 2.24, only the ones in (a), (b), and (c) are minimal in this
sense. It is not hard to see that if a DAG is faithful to a distribution, then it is
minimal in this sense.

Finally, we present an example showing that the method in Theorem 2.12
does not necessarily yield a unique DAG when the distribution is not strictly
positive.

Example 2.17 Suppose V ={X,Y,Z} and P is defined as follows:

P(zl)=a P(yllzl) =1 P(z1|z1) =b

P(x2)=1-a P(y2|z1) =0 P(z2|lz1)=1-b
P(yl]|z2) =0 P(z1]z2) = ¢
P(y2|22) =1 P(z2]22) =1—¢

Given the ordering [X,Y, Z], both DAGs in Figure 2.25 are minimal descriptions
of P obtained using the method in Theorem 2.12.
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Figure 2.26: If P satisfies the Markov condition with this DAG, then {T,Y, Z}
is a Markov blanket of X.

2.5 Markov Blankets and Boundaries

A Bayesian network can have a large number of nodes, and the probability of
a given node can be affected by instantiating a distant node. However, it turns
out that the instantiation of a set of close nodes can shield a node from the
affect of all other nodes. The following definition and theorem show this:

Definition 2.12 Let V be a set of random variables, P be their joint probability
distribution, and X € V. Then a Markov blanket My of X is any set of
variables such that X is conditionally independent of all the other variables
gwen Mx. That is,

Ip({X},V = (Mx U{X})[Mx).

Theorem 2.13 Suppose (G, P) satisfies the Markov condition. Then for each
variable X, the set of all parents of X, children of X, and parents of children
of X is a Markov blanket of X .

Proof. It is straightforward that this set d-separates {X} from the set of all
other nodes in V. That is, if we call this set Mx,

Ic({X},V — (Mx U{X})|Mx).
The proof therefore follows from Theorem 2.1.
Example 2.18 Suppose (G, P) satisfies the Markov condition where G is the

DAG in Figure 2.26. Then due to Theorem 2.13 {T,Y,Z} is a Markov blanket
of X.

Example 2.19 Suppose (G, P) satisfies the Markov condition where G is the
DAG in Figure 2.26, and (G, P) also satisfies the Markov condition where G’
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is the DAG G in Figure 2.26 with the edge T — X removed. Then the Markov
blanket {T,Y, Z} is not minimal in the sense that its subset {Y,Z} is also a
Markov blanket of X .

The last example motivates the following definition:

Definition 2.13 Let V be a set of random variables, P be their joint probability
distribution, and X € V. Then a Markov boundary of X is any Markov
blanket such that none of its proper subsets is a Markov blanket of X .

We have the following theorem:

Theorem 2.14 Suppose (G, P) satisfies the faithfulness condition. Then for
each variable X, the set of all parents of X, children of X, and parents of
children of X is the unique Markov boundary of X.

Proof. Let Mx be the set identified in this theorem. Due to Theorem 2.13,
My is a Markov blanket of X. Clearly there is at least one Markov boundary
for X. So if Mx is not the unique Markov boundary for X, there would have to
be some other set A not equal to Mx, which is a Markov boundary of X. Since
Mx # A and Mx cannot be a proper subset of A, there is some Y € Mx such
that Y ¢ A. Since A is a Markov boundary for X, we have Ip({X},{Y}A).
If Y is a parent or a child of X, we would not have I({ X}, {Y}A), which
means we would have a conditional independence which is not a d-separation.
But Theorem 2.5 says this cannot be. If Y is a parent of a child of X, let Z
be their common child. If Z € A, we again would not have I({X},{Y}|A). If
Z ¢ A, we would have Ip({X},{Z}|A) because A is a Markov boundary of X,
but we do not have I¢({X},{Z}A) because X is a parent of Z. So again we
would have a conditional independence which is not a d-separation. This proves
there can be no such set A.

Example 2.20 Suppose (G, P) satisfies the faithfulness condition where G is
the DAG in Figure 2.26. Then due to Theorem 2.14 {T,Y,Z} is the unique
Markov boundary of X.

Theorem 2.14 holds for all probability distributions including ones that are
not strictly positive. When a probability distribution is not strictly positive,
there is not necessarily a unique Markov boundary. This is shown in the follow-
ing example:

Example 2.21 Let P be the probability distribution in Example 2.17. Then
{X} and {Y'} are both Markov boundaries of {Z}. Note that neither DAG in
Figure 2.25 is faithful to P.

Our final result is that in the case of strictly positive distributions the Markov
boundary is unique:

Theorem 2.15 Suppose P is a strictly positive probability distribution of the
variables in V. Then for each X €V there is a unique Markov boundary of X.

Proof. The proof can be found in [Pearl, 1988].
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Figure 2.27: This DAG is not a minimal description of the probability distrib-
ution of the variables if the only influence of F' on G is through D.

2.6 More on Causal DAGs

Recall from Section 1.4 that if we create a causal DAG G = (V, E) and assume
the probability distribution of the variables in V satisfies the Markov condition
with G, we say we are making the causal Markov assumption. In that section
we argued that, if we define causation based on manipulation, this assumption
is often justified. Next we discuss three related causal assumptions, namely
the causal minimality assumption, the causal faithfulness assumption, and the
causal embedded faithfulness assumption.

2.6.1 The Causal Minimality Assumption

If we create a causal DAG G = (V, E) and assume the probability distribution of
the variables in V satisfies the minimality condition with G, we say we are mak-
ing the causal minimality assumption. Recall if P satisfies the minimality
condition with G, then P satisfies the Markov condition with G. So the causal
minimality assumption subsumes the causal Markov assumption. If we define
causation based on manipulation and we feel the causal Markov assumption is
justified, would we also expect this assumption to be justified? In general, it
seems we would. The only apparent exception to minimality could be if we
included an edge from X to Y when X is only an indirect cause of Y through
some other variable(s) in V. Consider again the situation concerning finasteride,
DHT level, and hair growth discussed in Section 1.4. We noted that DHT level
is a causal mediary between finasteride and hair growth with finasteride having
no other causal path to hair growth. We concluded that hair growth (G) is
independent of finasteride (F') conditional on DHT level (D). Therefore, if we
represent the causal relationships among the variables by the DAG in Figure
2.27, the DAG would not be a minimal description of the probability distribu-
tion because we can remove the edge F' — G and the Markov condition will still
be satisfied. However, since we've defined a causal DAG (See the beginning of
Section 1.4.2.) to be one that contains only direct causal influences, the DAG
containing the edge F' — G is not a causal DAG according to our definition.
So, given our definition of a causal DAG, this situation is not really an exception
to the causal minimality assumption.
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Figure 2.28: If D does not transmit an influence from F to G, this causal DAG
will not be faithful to the probability distribution of the variables.

2.6.2 The Causal Faithfulness Assumption

If we create a causal DAG G = (V, E) and assume the probability distribution
of the variables in V satisfies the faithfulness condition with G, we say we are
making the causal faithfulness assumption. Recall if P satisfies the faith-
fulness condition with G, then P satisfies the minimality condition with G. So
the causal faithfulness assumption subsumes the causal minimality assumption.
If we define causation based on manipulation and we feel the causal minimality
assumption is justified, would we also expect this assumption to be justified? It
seems in most cases we would. For example, if the manipulation of X leads to
a change in the probability distribution of Y and to a change in the probability
distribution of Z, we would ordinarily not expect Y and Z to be independent.
That is, we ordinarily expect the presence of one effect of a cause should make
it more likely its other effects are present. Similarly, if the manipulation of X
leads to a change in the probability distribution of Y, and the manipulation of
Y leads to a change in the probability distribution of Z, we would ordinarily not
expect X and Z to be independent. That is, we ordinarily expect a causal me-
diary to transmit an influence from its antecedent to its consequence. However,
there are notable exceptions. Recall in Section 1.4.1 we offered the possibility
that a certain minimal level of DHT is necessary for hair loss, more than that
minimal level has no further effect on hair loss, and finasteride is not capable of
lowering DHT level below that level. That is, it may be that finasteride (F') has
a causal effect on DHT level (D), DHT level has a causal effect on hair growth
(G), and yet finasteride has no effect on hair growth. Our causal DAG, which
is shown in Figure 2.28, would then not be faithful to the distribution of the
variables because its structure does not entail Ip({G}, {F}). Figure 2.20 shows
actual probability values which result in this independence. Recall that it is not
even possible to faithfully embed the distribution, which is the product of the
conditional distributions shown in that figure.

This situation is fundamentally different than the problem encountered when
we fail to identify a hidden common cause (discussed in Section 1.4.2 and more
in the following subsection). If we fail to identify a hidden common cause,
our problem is in our lack of identifying variables; and, if we did successfully
identify all hidden common causes, we would ordinarily expect the Markov
condition, and indeed the faithfulness condition, to be satisfied. In the current
situation, the lack of faithfulness is inherent in the relationships among the
variables themselves. There are other similar notable exceptions to faithfulness.
Some are discussed in the exercises.
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Figure 2.29: We would not expect the DAG in (a) to satisfy the Markov condi-
tion with the probability distribution of the 5 variables in that figure if Z and
W had a hidden cause, as depicted by the shaded node H in (b). We would
expect the DAG in (c) to be a minimal description of the distribution but not
faithful to it.

2.6.3 The Causal Embedded Faithfulness Assumption

In Section 1.4.2, we noted three important exceptions to the causal Markov as-
sumptions. The first is that their can be no hidden common causes; the second
is that selection bias cannot be present; and the third is that there can be no
causal feedback loops. Since the causal faithfulness assumption subsumes the
causal Markov assumption, these are also exceptions to the causal faithfulness
assumption. As discussed in the previous subsection, other exceptions to the
causal faithfulness assumption include situations such as when a causal medi-
ary fails to transmit an influence from its antecedent to its consequence. Of
these exceptions, the first exception (hidden common causes) seems to be most
prominent. Let’s discuss that exception further.
Suppose we identify the following causal relationships with manipulation:

X causes Z
Y causes W
Z causes S

W causes S.

Then we would construct the causal DAG shown in Figure 2.29 (a). The Markov
condition entails Ip(Z, W) for that DAG. However, if Z and W had a hidden
common cause as shown in Figure 2.29 (b), we would not ordinarily expect this
independency. This was discussed in Section 1.4.2. So if we fail to identify
a hidden common cause, ordinarily we would not expect the causal DAG to
satisfy the Markov condition with the probability distribution of the variables,
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which means it would not satisfy the faithfulness condition with that distri-
bution either. However, we would ordinarily expect faithfulness to the DAG
that included all hidden common causes. For example, if H is the only hidden
common cause among the variables in the DAG in Figure 2.29 (b), we would
ordinarily expect the probability distribution of all six variables to satisfy the
faithfulness condition with the DAG in that figure, which means the probability
distribution of X, Y, Z, W, and S is embedded faithfully in that DAG. If we
assume the probability distribution of the observed variables is embedded faith-
fully in a causal DAG containing these variables and all hidden common causes,
we say we are making the causal embedded faithfulness assumption. It
seems this assumption is often justified. Perhaps the most notable exception
to it is the presence of selection bias. This exception is discussed further in
Exercise 2.35 and in Section 9.1.2.

Note that if we assume faithfulness to the DAG in Figure 2.29 (b), and we
add the adjacencies Z — W and X — W to the DAG in Figure 2.29 (a), the
probability distribution of S, X, Y, Z, and W would satisfy the Markov condi-
tion with the resultant DAG (shown in Figure 2.29 (c)) because this new DAG
does not entail Ip({Z},{W}) or any other independencies not entailed by the
DAG in Figure 2.29 (b). The problem with the DAG in Figure 2.29 (c) is that it
fails to entail independencies that are present. That is, we have Ip({X},{W}),
and the DAG in Figure 2.29 (c) does not entail this independency (Can you find
others that it fails to entail?). This means it is not faithful to the probability
distribution of S, X, Y, Z, and W. Indeed, similar to the result obtained in
Example 2.11, no DAG is faithful to the distribution of only S, X, Y, Z, and
W. Rather this distribution can only be embedded faithfully as done in Figure
2.29 (b) with the hidden common cause. Regardless, the DAG in Figure 2.29
(c) is a minimal description of the distribution of only S, X, Y, Z, and W, and
it constitutes a Bayesian network with that distribution. So any inference algo-
rithms for Bayesian networks (discussed in Chapters 3, 4 and 5) are applicable
to it. However, it is no longer a causal DAG.

EXERCISES
Section 2.1

Exercise 2.1 Consider the DAG G in Figure 2.2. Prove that the Markov con-
dition entails Ip({C},{G}{A, F}) for G.

Exercise 2.2 Suppose we add another variable R, an edge from F to R, and
an edge from R to C to the DAG G in Figure 2.3. The variable R might repre-
sent the professor’s initial reputation. State which of the following conditional
independencies you would feel are entailed by the Markov condition for G. For
each that you feel is entailed, try to prove it actually is.
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1. I,({R},{A}).
2. Ip({R}, {AY{F}).
3. Ip({R}, {AF{F, C}).

Exercise 2.3 State which of the following d-separations are in the DAG in
Figure 2.5:

L Ig({W} {SH{Y, X}).
Ie({(WHASHY, Z}).
Ie({W}A{SH{R, X}).
Ic({W, X}, {S, TY{R, Z}).
Ic({Y; Z}ATH{R, S})-
Ie({X, S} AW, TYKR, Z}).
Ic({X, 5, Z} AW, TH{R}).
Ie({X, 2}, {W}).

Ic({X, 5, 2}, {W}).

© xRS &

Are {X,S,Z} and {W} d-separated by any set in that DAG?

Exercise 2.4 Let A, B, and C be subsets of a set of random variables V. Show
the following:

1. IfANB =9, ANC# @, and BN C # &, then Ip(A,B|C) is equivalent
to Ip(A — C,B — C|C). That is, for every probability distribution P of V,
Ip/(A, B|C) holds if and only Ip(A — C,B — C|C) holds.

2. If ANB # @& and P is a probability distribution of V such that Ip(A, B|C)
holds, P is not positive definite. A probability distribution is positive
definite if there are no 0 values in the distribution.

3. If the Markov condition entails a conditional independency, then the inde-
pendency must hold in a positive definite distribution. Hint: Use Theorem
1.5.

Conclude Lemma 2.2 from these three facts.

Exercise 2.5 Show Ip({X},{Z}) for the distribution P in the Bayesian net-
work in Figure 2.6.

Exercise 2.6 Use Algorithm 2.1 to find all nodes reachable from M in Figure
2.7. Show the labeling of the edges according to that algorithm.
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Exercise 2.7 Implement Algorithm 2.1 in the computer language of your choice.

Exercise 2.8 Perform a more rigorous analysis of Algorithm 2.1 than that done
in the text. That is, first identify basic operations. Then show W(m,n) €
O(mn) for these basic operations, and develop an instance showing W(m,n) €

Exercise 2.9 Implement Algorithm 2.2 in the computer language of your choice.

Exercise 2.10 Construct again a DAG representing the causal relationships
described in Ezxercise 1.25, but this time include auxiliary parent variables rep-
resenting the possible values of the parameters in the conditional distributions.
Suppose we use the following variable names:

Visit to Asia
Bronchitis
Dyspnea

Lung Cancer
Smoking History
Tuberculosis.
Chest X-ray

QIimTowe

Identify the auziliary parent variables, whose values we need to ascertain, for
each of the following calculations:

1. P({B}|{H,D}).
2. P({L}|{H,D}).
3. P{T}{H,D}).

Section 2.2

Exercise 2.11 Prove Corollary 2.1.

Exercise 2.12 In Part 2 of Case 1 in the proof of Theorem 2.4 it was left as
an exercise to show that if there is also a head-to-head meeting on oo at N,
there must be a head-to-head meeting at a node N* € N somewhere between N’
and N" (including N") on py, and there cannot be a head-to-head meeting at
N* on py. Show this. Hint: Recall p, is not blocked.

Exercise 2.13 Show all DAGs Markov equivalent to each of the following DAGS,
and show the pattern representing the Markov equivalence class to which each
of the following belongs:

1. The DAG in Figure 2.15 (a).
2. The DAG in Figure 2.15 (c).
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P(yl|x1) =b
P(yl|x2) = c

P(wllyl,z1) =d

Pty =a (X)) P(wily122) = e
P(wlly2,z1) = e

a P(wlly2,z2) = f

P(z1|x1

) =
P(z1|x2) =

c
b

Figure 2.30: The probability distribution is not faithful to the DAG because
Ip(W, X) and not Ig(W, X). Each variable only has two possible values. So for
simplicity only the probability of one is shown.

3. The DAG in Figure 2.15 (d).

Exercise 2.14 Write a polynomial-time algorithm for determining whether two
DAGSs are Markov equivalent. Implement the algorithm in the computer lan-
guage of your choice.

Section 2.3

Exercise 2.15 Show that all the non-independencies listed in Example 2.8 hold
for the distribution discussed in that example.

Exercise 2.16 Assign arbitrary values to the conditional distributions for the
DAG in Figure 2.20, and see if the resultant distribution is faithful to the DAG.
Try to find an unfaithful distribution besides ones in the family shown in that

figure.

Exercise 2.17 Consider the Bayesian network in Figure 2.30.

1. Show that the probability distribution is not faithful to the DAG because
we have Ip({W},{X}) and not Ig({W},{X}).

2. Show further that this distribution does not admit o faithful DAG repre-
sentation.

Exercise 2.18 Consider the Bayesian network in Figure 2.31.
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P(x1l)=a P(yl)=b
Px2)=1-a Py2)=1-b

P(z1|x1,yl)=c P(z1|x1,y2) =c
P(z2|x1yl) =e P(z2|x1,y2) = f

P(z3|x1,yl) =g P(z3|x1,y2) =g
P(z4|x1,yl)=1-(c +e +Q) P(z4|x1,y2)=1-(c+f+gQ)
P(z1|x2,y1) =d P(z1|x2,y2) =d
P(z2|x2,y1) =e P(z2|x2,y2) = f
P(z3|x2,yl)=c+g-d P(z3|x2,y2)=c+g-d

P(z4|x2,yl)=1-(c + e + Q) P(z4|x2,y2)=1-(c+f+Q)

Figure 2.31: The probability distribution is not faithful to the DAG because
Ip(X,Y|Z) and not I¢(X,Y|2Z).

1. Show that the probability distribution is not faithful to the DAG because
we have Ip({X},{Y}{Z}) and not Ic({X},{Y }H{Z}).

2. Show further that this distribution does not admit a faithful DAG repre-
sentation.

Exercise 2.19 Let V ={X,Y,Z, W) and P be given by
P(z,y,z,w) =k x f(z,y) X g(y,2) x h(z,w) x i(w,z),

where f, g, h, and i are real-valued functions and k is a normalizing constant.
Show that this distribution does not admit a faithful DAG representation. Hint:
First show that the only conditional independencies are Ip({X}, {Z}{Y,W})
and Ip({Y}, {WI{X, Z}).

Exercise 2.20 Suppose we use the principle of indifference to assign probabil-
ities to the objects in Figure 2.32. Let random wvariables V, S,C, L, and F be
defined as follows:
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Q0 QO

QY QD
20202 @ 2] el el
L0 U UY

Figure 2.32: Objects with 5 properties.

Variable | Value | Outcomes Mapped to this Value

1% vl All objects containing a ‘1’
v2 All objects containing a 2’

S sl All square objects
s2 All circular objects

C cl All grey objects
2 All white objects

L 1 All objects covered with lines
12 All objects not covered with lines

F f1 All objects containing a number in a large font
f2 All objects containing a number in a small font

Show that the probability distribution of V, S, C, L, and F is faithful to the DAG
in Figure 2.21 (a). The result in Example 2.11 therefore implies the marginal
distribution of V, S, L, and I is not faithful to any DAG.

Exercise 2.21 Prove Theorem 2.9.
Exercise 2.22 Prove Theorem 2.10.

Exercise 2.23 Develop a distribution, other than the one given in Example
2.11, which admits an embedded faithful DAG representation but does not admit
a faithful DAG representation.

Exercise 2.24 Show that the distribution discussed in Exercise 2.17 does not
admit an embedded faithful DAG representation.

Exercise 2.25 Show that the distribution discussed in Exercise 2.18 does not
admit an embedded faithful DAG representation.
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Exercise 2.26 Show that the distribution discussed in Exercise 2.19 does not
admit an embedded faithful DAG representation.

Section 2.4

Exercise 2.27 Obtain DAGSs satisfying the minimality condition with P using
other orderings of the variables discussed in Example 2.16.

Section 2.5

Exercise 2.28 Apply Theorem 2.13 to find a Markov blanket for each node in
the DAG in Figure 2.26.

Exercise 2.29 Show that neither DAG in Figure 2.25 is faithful to the distri-
bution discussed in Examples 2.17 and 2.21.

Section 2.6

Exercise 2.30 Besides Ip({X},{W?}), are there other independencies entailed
by the DAG in Figure 2.29 (b) that are not entailed by the DAG in Figure 2.29

(c)?

Exercise 2.31 Gliven the joint distribution of X, Y, Z, W, S, and H is faithful
to the DAG in Figure 2.29 (b), show that the marginal distribution of X,Y, Z,
W, and S does not admit a faithful DAG representation.

Exercise 2.32 Typing experience increases with age but manual dexterity de-
creases with age. Experience results in better typing performance as does good
manual dexterity. So it seems after an initial learning period, typing perfor-
mance will stay about constant as age increases because the effects of increased
experience and decreased manual dexterity will cancel each other out. Draw
a DAG representing the causal influences among the wvariables, and discuss
whether the probability distribution of the variables is faithful to the DAG. If
it is not, show numeric values that could have this unfaithfulness. Hint: See
FEzercise 2.17.

Exercise 2.33 FEzxercise 2.18 showed that the probability distribution in Figure
2.31 is not faithful to the DAG in that figure because Ip({ X} {Y}{Z}) and
not Ig({X},{Y}[{Z}). This means, if these are causal relationships, there is
no discounting (Recall discounting means one cause explains away a common
effect, thereby making the other cause less likely). Give an intuitive explanation
for why this might be the case. Hint: Note that the probability of each of Z'’s
values is dependent on only one of the variables. For example, p(z1|zl,yl) =
p(zl|xl,y2) = p(z1|zl) and p(z1|x2,yl) = p(z1|x2,42) = p(z1|x2).
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Figure 2.33: Selection bias is present.

Exercise 2.34 The probability distribution in Figure 2.20 does not satisfy the
faithfulness condition with the DAG X «— Y — Z. Explain why. If these edges
describe causal influences, we would have two variables with a common cause
that are independent. Give an example for how this might happen.

Exercise 2.35 Suppose the probability distribution P of X, Y, Z, W, and S
is faithful to the DAG in Figure 2.33 and we are observing a subpopulation of
individuals who have S instantiated to a particular value s (as indicated by the
cross through S in the DAG). That is, selection bias is present (See Section
1.4.1.). Let Pl|s denote the probability distribution of X, Y, Z, and W con-
ditional on S = s. Show that P|s does not admit an embedded faithful DAG
representation. Hint: First show that the only conditional independencies are
Ips({ X} AZY{Y, W}) and Ip({Y},{W}{X,Z}). Note that these are the
same conditional independencies as those obtained a different way in Ezercise
2.19.
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Chapter 3

Inference: Discrete
Variables

A standard application of Bayes’ Theorem (reviewed in Section 1.2) is inference
in a two-node Bayesian network. As discussed in Section 1.3, larger Bayesian
networks address the problem of representing the joint probability distribution of
a large number of variables and doing Bayesian inference with these variables.
For example, recall the Bayesian network discussed in Example 1.32. That
network, which is shown again in Figure 3.1, represents the joint probability
distribution of smoking history (H), bronchitis (B), lung cancer (L), fatigue
(F), and chest X-ray (C).

If a patient had a smoking history and a positive chest X-ray, we would be
interested in the probability of that patient having lung cancer (i.e. P(I1|h1,cl))
and having bronchitis (i.e. P(b1]h1,cl)). In this chapter, we develop algorithms
that perform this type of inference.

In Section 3.1, we present simple examples showing why the conditional
independencies entailed by the Markov condition enable us to do inference with
a large number of variables. Section 3.2 develops Pearl’s [1986] message-passing
algorithm for doing exact inference in Bayesian networks. This algorithm passes
massages in the DAG to perform inference. In Section 3.3, we provide a version
of the algorithm that more efficiently handles networks in which the noisy or-
gate model is assumed. Section 3.4 references other inference algorithms that
also employ the DAG, while Section 3.5 presents the symbolic probabilistic
inference algorithm which does not employ the DAG. Next Section 3.6 discusses
the complexity of doing inference in Bayesian networks. Finally, Section 3.7
presents research relating Pearl’s message-passing algorithm to human causal
reasoning.

123
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P(hl) = .2

P(b1lhl) = .25
P(b1]h2) = .05

P(11/h1) = .003
P(11]h2) = .00005

P(f1]b1,11) = .75 P(c1|1) = .6
P(f1]b1,12) = .10 P(c1|12) = .02
P(f1]b2,11) = .5

P(f1|b2,12) = .05

Figure 3.1: A Bayesian neworks. Each variable only has two values; so only the
probability of one is shown.

3.1 Examples of Inference

Next we present some examples illustrating how the conditional independencies
entailed by the Markov condition can be exploited to accomplish inference in a
Bayesian network.

Example 3.1 Consider the Bayesian network in Figure 3.2 (a). The prior
probabilities of all variables can be computed as follows:

P(yl) = P(yllzl)P(x1) + P(yl|z2)P(x2) = (.9)(4) + (.8)(.6) = .84
P(z1) = P(zllyl)P(yl) + P(21]y2)P(y2) = (.7)(.84) + (.4)(.16) = .652
P(wl) = P(wl|z1)P(21) + P(wl|22)P(22) = (.5)(.652) + (.6)(.348) = .5348.

These probabilities are shown in Figure 3.2 (b). Note that the computation for
each variable requires information determined for its parent. We can therefore
consider this method a message passing algorithm in which each node passes
its child a message needed to compute the child’s probabilities. Clearly, this
algorithm applies to an arbitrarily long linked list and to trees.

Suppose next that X is instantiated for x1. Since the Markov condition
entails each variable is conditionally independent of X given its parent, we can
compute the conditional probabilities of the remaining variables by again passing
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() P-4 ©
P(y1|x1) = P(yl) = .84
@ P(yl|x2) = @ P(y2) = .16
P(zlly2) =
P(wl|zl) = .5 P(wl) = .5348
P(wl|z2) = .6 P(w2) = .4652

(@ (b)

P(z1) = .652
P(z2) = .348

Figure 3.2: A Bayesian network is in (a), and the prior probabilities of the
variables in that network are in (b). Each variable only has two values; so only
the probability of one is shown in (a).

messages down as follows:

P(yllzl) = .9

P(z1|z1) = P(z1llyl,21)P(yl|zl) + P(21]y2,21)P(y2|x1)
= P(z1|yl)P(yl|zl) + P(=1|y2)P(y2|x1)
= (T)9)+ (A1) = 67

P(wllzl) = P(wl|zl,21)P(z1]x1) + P(wl|22, x1)P(22]x1)

P(wl|21)P(z1|z1) + P(wl|22)P(22|x1)
= P((.8)(.67) + (.6)(.33) = .734.

Clearly, this algorithm also applies to an arbitrarily long linked list and to trees.

The preceding instantiation shows how we can use downward propagation
of messages to compute the conditional probabilities of variables below the in-
stantiated variable. Suppose now that W is instantiated for wl (and no other
variable is instantiated). We can use upward propagation of messages to com-
pute the conditional probabilities of the remaining variables as follows. First we
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use Bayes’ theorem to compute P(z1|wl):

Plejwl) = £ (wga)f; (1) _ ('5.)5(3222) — .6096.

Then to compute P(yl|wl), we again apply Bayes’ Theorem as follows:

P(wllyl)P(yl)

P(yllwl) = Pwl)

We cannot yet complete this computation because we do not know P(wl|yl).
However, we can obtain this value in the manner shown when we discussed
downward propagation. That is,

P(wllyl) = (P(wl|z1)P(z1|yl) + P(wl|22)P(22|y1).

After doing this computation, also computing P(wl|y2) (because X will need this
latter value), and then determining P(yl|wl), we pass P(wl|yl) and P(wl|y2)
to X. We then compute P(wl|zl) and P(x1|wl) in sequence as follows:

P(wllzl) = (P(wl|yl)P(yl|z1) + P(wl|y2)P(y2|x1)

P(wl|zl)P(x1)

P(wl)
It is left as an exercise to perform these computations. Clearly, this upward
propagation scheme applies to an arbitrarily long linked list.

P(z1l|wl) =

The next example shows how to turn corners in a tree.

Example 3.2 Consider the Bayesian network in Figure 3.3. Suppose W is in-
stantiated for wl. We compute P(ylwl) followed by P(x1|wl) using the upward
propagation algorithm just described. Then we proceed to compute P(z1|wl) fol-
lowed by P(t1lwl) using the downward propagation algorithm. It is left as an
exercise to do this.

3.2 Pearl’s Message-Passing Algorithm

By exploiting local independencies as we did in the previous subsection, Pearl
[1986, 1988] developed a message-passing algorithm for inference in Bayesian
networks. Given a set a of values of a set A of instantiated variables, the al-
gorithm determines P(z|a) for all values x of each variable X the network. It
accomplishes this by initiating messages from each instantiated variable to its
neighbors. These neighbors in turn pass messages to their neighbors. The up-
dating does not depend on the order in which we initiate these messages, which
means the evidence can arrive in any order. First we develop the algorithm for
Bayesian networks whose DAGs are rooted trees; then we extend the algorithm
to singly-connected networks.
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P(x1) = .1

P(yl|x1) = .6 P(z1|x1) =.7
P(yl|x2) = .2 P(z1|x2) =.1
P(wllyl) =.9 P(t1|z1) = .8
P(wlly2) =.3 P(t1|z2) = .1

Figure 3.3: A Bayesian network that is a tree. Each variable only has two
possible values. So only the probability of one is shown.

3.2.1 Inference in Trees

Recall a rooted tree is a DAG in which there is a unique node called the root,
which has no parent, every other node has precisely one parent, and every node
is a descendent of the root.

The algorithm is based on the following theorem. It may be best to read the
proof of the theorem before its statement as its statement is not very transparent
without seeing it developed.

Theorem 3.1 Let (G, P) be a Bayesian network whose DAG is a tree, where
G = (V,E), and a be a set of values of a subset A C V. For each variable X,
define X messages, \ values, m messages, and 7 values as follows:

1. X messages:

For each child Y of X, for all values of x,
Ay (z) =) Pyla)A(y).
y

2. X values:

If X € A and X’s value is Z,
Az) = 1
AMz) = 0 for x # .
If X ¢ A and X is a leaf, for all values of x,

Az) =1L
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If X ¢ A and X is a nonleaf, for all values of x,
No)= [ M),

UeCHx
where CHx denotes the set of children of X.

3. ™ messages:

If Z is the parent of X, then for all values of z,
rx(z)=xz)  J[ ().

UeCHz—{X}
4. m values:
If X € A and X’s value is Z,
m(2) 1
mx) = 0 for x # .
If X ¢ A and X s the root, for all values of x,
7m(x) = P(z).

If X ¢ A, X is not the root, and Z is the parent of X, for all values of
:I:,

m(x) = Z P(z|z)mx(2).

5. Given the definitions above, for each variable X, we have for all values of
:I:,
P(z]a) = a\(z)w(z),
where o is a normalizing constant.

Proof. We will prove the theorem for the case where each node has precisely
two children. The case of an arbitrary tree is then a straightforward general-
ization. Let Dx be the subset of A containing all members of A that are in the
subtree rooted at X (therefore, including X if X € A), and Nx be the subset
of A containing all members of A that are nondescendents of X. Recall X is a
nondescendent of X; so this set includes X if X € A. This situation is depicted
in Figure 8.4. We have for each value of x,

P(zla) = P(z|dx,nx) (3.1)
P(dx,nxlw)P(JI)
P(dx,nx)
P(dx|z)P(nx|z)P(z)
P(dx,nx)
P(dx|z)P(znx)P(nx)P(z)
P(x)P(dx,nx)
= BP(dx|z)P(z/nx),
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N

X

Figure 3.4: The set of instantiated variables A= Ny UDx. If X € A, X is in
both Nx and Dx.

where 3 is a constant that does not depend on the value of x. The 2nd and
4th equalities are due to Bayes” Theorem. The 3rd equality follows directly from
d-separation (Lemma 2.1) if X ¢ A. It is left as an exercise to show it still
holds if X € A.

We will develop functions A(x) and 7w(x) such
Az) = P(dx|z)
w(z) = P(z|nx).

By = we mean ‘proportional to’. That is, w(x), for example, may not equal
P(z|nx), but it equals a constant times P(x|nx), where the constant does not
depend on the value of x. Once we do this, due to Equality 3.1, we will have

P(a]a) = aA(@)n(x),
where « is a normalizing constant that does not depend on the value of x.

1. Develop A(x): We need
Az) = P(dx|z). (3.2)

CAsE 1: X € A and X ’s value is Z. Since X € Dy,
P(dx|z) =0 for x # .
So to achieve Proportionality 3.2, we can set

Az) =
AMz) = 0 for x # .

CASE 2: X ¢ A and X is a leaf. In this case dx = &, the empty set of
variables, and so

P(dx|z) = P(o|z) =1 for all values of w.
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Figure 3.5: If X is not in A, then Dx = Dy U Dy .

So to achieve Proportionality 3.2, we can set

AMz)=1 for all values of x.

CASE 3: X ¢ A and X is a nonleaf. Let Y be X's left child, W be X ’s
right child. Then since X ¢ A,

Dx =Dy UDw.
This situation is depicted in Figure 3.5. We have

P(dx|z) = P(dy,dwlx)
P(dy |z) P(dw|x)

= 3" Pyle)P(dyly) Y Plwlz) P(dwlw)

I$

Y Plyln)Ay) Y Plwlz)A(w).

The second equality is due to d-separation and the third to the law of
total probability. So we can achieve Proportionality 3.2 by defining
for all values of x,

Av(@) = > Plylr)Ay)

3" Plwla)A(w),

and setting

Ax) = Ay () Aw (x) for all values of w.
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Figure 3.6: If X is not in E, then Nx =Nz U Drp.

2. Develop w(x): We need
7(z) = P(z|nx). (3.3)

CAsSE 1: X € A and X ’s value is &. Due to the fact that X € Ny,

=

P(z|nx) = Pz

1
z)=0 for x # 7.

So we can achieve Proportionality 3.3 by setting

|
o =

m(Z)

for x # .

()

CASE 2: X ¢ A and X is the root. In this case nx = &, the empty set
of random wvariables, and so

P(z|nx) = P(z|@) = P(x) for all values of x.
So we can achieve Proportionality 3.3 by setting

m(x) = P(x) for all value of x.

CASE 3: X ¢ A and X is not the root. Without loss of generality assume
X is Z’s right child, and let T be Z’s left child. Then Nx = NzUDr.
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This situation is depicted in Figure 3.6. We have
Panx) = Y P(a]2)P(zlny)

- ZP(x|z)P(x|nZ,dT)

P(z|nz)P(nz)P(dr|2)P(z)
2 P R By, ar)

= 7Y Pl2)m(2)Ar(2).

It is left as an exercise to obtain the third equality above using the
same manipulations as in the derivation of Equality 3.1. So we can
achieve Proportionality 3.3 by defining for all values of z,

mx(2) = 7(2)Ar(2),

and setting

m(z) = ZP($|Z)7T)((Z) for all values of w.

This completes the proof.

Next we present an algorithm based on this theorem. It is left as an exercise
to show its correctness follows from the theorem. Clearly, the algorithm can be
implemented as an object-oriented program, in which each node is an object that
communicates with the other nodes by passing A and 7 messages. However, our
goal is to show the steps in the algorithm rather than to discuss implementation.
So we present it using top-down design.

Before presenting the algorithm, we show how the routines in it are called.
Routine initial _tree is first called as follows:

initial _tree((G, P), A, a, P(z]a));

After this call, A and a are both empty, and for every variables X, for every
value of x, P(z|a) is the conditional probability of x given a, which, since a is
empty, is the prior probability of x. Each time a variable V is instantiated for
0, routine update-tree is called as follows:

update _tree((G, P),A,a,V, b, P(x|a));
After this call, V has been added to A, v has been added to a, and for every

variables X, for every value of x, P(z|a) has been updated to be the conditional
probability of = given the new value of a. The algorithm now follows.
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Algomthm 3.1 Inference-in-Trees

Problem: Given a Bayesian network whose DAG is a tree, determine the
probabilities of the values of each node conditional on specified values of
the nodes in some subset.

Inputs: Bayesian network (G, P) whose DAG is a tree, where G = (V, E), and
a set of values a of a subset A C V.

Outputs: The Bayesian network (G, P) updated according to the values in
a. The X\ and 7 values and messages and P(zx|a) for each X € V are
considered part of the network.

void initial _tree (Bayesian-network& (G, P) where G = (V, E),
set-of-variables& A, set-of-variable-values& a)
{
A=g;a=0;
for (each X € V) {
for (each value z of X)

Az) = 1; // Compute A values.
for (the parent Z of X) // Does nothing if X is the a root.
for (each value z of Z)
Ax(2)=1; // Compute A messages.

}

for (each value r of the root R) {
P(rja) = P(r); // Compute P(r|a).
w(r) = P(r); // Compute R’s m values.
}
for (each child X of R)
send_m_msg(R, X);
}

void update tree (Bayesian-network& (G, P) where G = (V, E),
set-of-variables& A, set-of-variable-values& a,
variable V', variable-value )

A=AU{V} a=aU{o} // Add V to A.
A0) =1; w(v) =1; P(d]a) =1; // Instantiate V' to 0.
for (each value of v # ) {

A(w) =0; 7(v) =0; P(v|a) = 0;

if (V is not the root && V’s parent Z ¢ A)
send_ A _msqg(V, Z);

for (each child X of V such that X ¢ A)
send_m_msg(V, X);



134 CHAPTER 3. INFERENCE: DISCRETE VARIABLES

void send_ A msg(node Y, node X) // For simplicity (G, P) is
// not shown as input.
for (each value of x) {

Ay () =3 Py|lz)A(y); // Y sends X a A message.

AMz)= I Av(x); // Compute X’s A values.
U€ECHx

P(z|a) = a\(z)w(x); // Compute P(zx|a).

}

normalize P(x|a);

if (X is not the root and X’s parent Z ¢ A)
send_\_msg(X, Z);

for (each child W of X such that W #Y and W ¢ A)
send_m_msg(X,W);

void send_m_ msg(node Z, node X) // For simplicity (G, P) is
// not shown as input.
for (each value of z)

mx(2) =m(2) 11 Ay (2); // Z sends X a 7 message.
YeCHz—{X}

for (each value of x) {
m(x) =Y P(x|z)mx (2); // Compute X'’s 7 values.
P(z|a) = a\(z)m(z); // Compute P(z|a).
normalize P(z|a);

for (each child Y of X such that Y ¢ A)
send_m_msg(X,Y);

Examples of applying the preceding algorithm follow:
Example 3.3 Consider the Bayesian network in Figure 3.7 (a). It is the net-
work in Figure 3.1 with node F' removed. We will show the steps when the
network is initialized.
The call

wnitial _tree((G, P),A,a);

results in the following steps:
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P(hl) = .2

P(b1jh1) = .25
P(b1]h2) = .05

P(I1]h1) = .003
P(I1/h2) = .00005

P(cl|l1) = .6
P(c1|l2) = .02
(@
8(h) =(1,1)
B(h) = (.2,.8)
P(hT)=(2.8)
8s,4(h) = (1,1) 8s,(h)=(.1)
9B,(h) = (.2,.8) 9B, (h) = (2,.8)
8(b) = (1,1) 8()=(1,1)

B(b) = (.09,.91)
P(b|T) = (.09,.91)

B(l) = (.00064,.99936)
P31 = (.00064,.99936)

8s8.() = (1.1)

9B.() = (.00064,.99936)

()

8(c)=(1,1)
B(c) = (.02037,.97963)

P(c| 1) = (.02037,.97963)
(b)

Figure 3.7: Figure (b) shows the initialized network corresponding to the
Bayesian network in Figure (a). In Figure (b) we write, for example, P(h|@) =
(.2,.8) instead of P(h1|@) = .2 and P(h2|@) = .8.
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A=g;

a=g;

Ah1) = 1;M(h2) = 1;
A(b1) = 1; A(B2) = 1;
A1) =1;M(12) =1,

Acl) =1;M(c2) = 1;

send_7m_msg(H, B);
send_m _msg(H,L);

The call
send_7m_msg(H, B);

results in the following steps:

// Compute X\ values.

// Compute \ messages.

// Compute P(h|2).

// Compute H’s 7 values.

mr(hl) = n(h1)AL(R1) = (.2)(1) = .2; // H sends B a m message.

7TB(h2) = 7T(h2))\L(h2) =

(8)(1) = 8

7w(bl) = P(b1|hl)wg(hl) + P(b1|h2)wp(h2); // Compute B’s m values.
= (.25)(.2) + (.05)(.8) = .09;

7(b2) = P(b2|h1)7 (k1) + P(b2|h2)7 5(h2);
= (.75)(.2) + (.95)(.8) = .91;

P(b1]2) = aA(bl)m(bl) =
P(2]2) = aA(b2)m(b2) =

a(1)(.09) = .09¢«;  // Compute P(b|@).
a(1)(.91) = 9l

P(b1|2) = G52t = 09
P(b119) = Gt = 9L
The call

send_m_msg(H,L);
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results in the following steps:

mr(hl) =w(h)Ag(hl) = (.2)(1) = .2; // H sends L a

mr(h2) = w(h2)Ag(h2) = (.8)(1) = .8; // message.

w(11) = P(I1|h1)wp (h1) + P(I1|h2)7w L (h2); // Compute L's
= (.003)(.2) + (.00005)(.8) = .00064; // values.

w(12) = P(I2|h1)7r (k1) + P(12|h2) 7L (h2);
— (.997)(.2) + (.99995)(.8) = .99936;

P(11|@) = aA(11)7(11) = «(1)(.00064) = .00064c; // Compute P(l|D).
P(12|2) = a\I2)7(12) = a(1)(.99936) = .999360;

— .00064 _ .
P(11|®) T .00064a+.99936a 00064’

P(1112) = 5510+ s095a = -99936;
send_m_msg(L,O);
The call
send_m_msg(L,C);

results in the following steps:

mo(ll) = (1) = .00064; // L sends C a .

mc(12) = w(12) = .99936; // message.

7(cl) = P(cl|il)mc(11) + P(cl|i2)me(12); // Compute C’s
= (.6)(.00064) + (.02)(.99936) = .02037; // values.

7(c2) = P(2|I1)mc(11) + P(c2|12)7c(12);

(.4)(.00064) + (.98)(.99936) = .97963;

P(cl]@) = ai(cl)m(cl) = a(1)(.02037) = .02037c;;  // Compute P(c|D).
P(c2|2) = a\(c2)m(c2) = a(1)(.97963) = .97963a;

_ .02037a _ .
P(cl|@) = 02037t .97963a — 02037;

_ .97963a _ .
P(cl|@) = 03037t 979630 — 27963;

The initialization is now complete. The initialized network is shown in Figure
3.7 (b).



138 CHAPTER 3. INFERENCE: DISCRETE VARIABLES

Example 3.4 Consider again the Bayesian network in Figure 3.7 (a). Suppose
B is instantiated for bl. That is, we find out the patient has bronchitis. Next we
show the steps in the algorithm when the network’s values are updated according
to this instantiation.

The call
update_tree((G, P), A, a, B,bl);
results in the following steps:

A=@U{B} ={B};
a=oU{bl} = {bl};

(1) =1; w(b1) = 1; P(b1|{b1}) = 1; // Instantiate B for bl.
(b2) = 0; w(b2) = 0; P(b2|{b1}) = 0;

send_\_msg(B,H);
The call
send_\_msg(B,H);
results in the following steps:

Ap(hl) = P(b1|R1)A(b1) + P(b2|h1) (b2); // B sends H a \
=(.25)(1) +.75(0) = // message.

A5 (h2) = P(b1|h2)A\(b )+P(b2|h2) (b2);
= (.05)(1) +.95(0) = .0

A(h1) =
A(h2) =

AB (.25)(1) = .25; // Compute H’s A\

AB = (.05)(1) = .05; // values.

P(h1|{b1}) = aX(h1l)m(h1) = a(.25)(.2) = .05c; // Compute P(h|{b1}).
P(h2|{b1}) = a(h2)m(h2) = a(.05)(.8) = .04

P(h1[{b1}) = 5282 = 5556;
P(h2/{b1}) = e = 4d44;

send_m _msg(H,L);

The call

send_m_msg(H,L);
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results in the following steps:

139

mr(hl) =w(h1)Ag(hl) = (.2)(.25) = .05; // H sends L a7
) =(.8)

mr(h2) =7

=
[\

(.05) = .04; // message.

w(11) = P(I1|h1)wp (h1) + P(I1|h2)7w L (h2); // Compute L’s
— (.003)(.05) + (.00005)(.04) = .00015; // values.

w(12) = P(I12|h1)w (k1) + P(I12|h2)7 L, (h2);
— (.997)(.05) + (.99995)(.04) = .08985;

P(I1[{p1}) = ar(I1)7(11) = a(1)(.00015) = .00015a;
P(12|{p1}) = ar(i2)7(12) = a(1)(.08985) = .08985a;

P(I1[{b1}) = .oooisog(f.%ggssa = .00167;

P(I2{b1}) = .oooigg(f.%ggssa = .99833;

send_m_msg(L,C);
The call
send_7w_msg(L,C);

results in the following steps:

ro(ll) = (1) = .00015;
mo(12) = w(12) = .08985;

m(cl) = P(cllil)mc(11) + P(cl|l2)7 e (12);
(.6)(.00015) + (.02)(.08985) = .00189;

7(c2) = P(2|I1)mc(11) + P(c2|12)7c(12);

(.4)(.00015) + (.98)(.08985) = .08811;

P(c1]{b1}) = aX(cl)n(cl) = a(1)(.00189) = .00189a;
P(c2|{b1}) = aX(e2)7(c2) = «(1)(.08811) = .08811«;

P(1{b1}) = .oméggf%gsua =.021;

P(i2{b1}) = .0018823—1%)2811(1 = .979;

// Compute
// P(I{b1}).

// L sends C am
// message.

// Compute C’s m
// values.

// Compute
// P(cl{p1}).

The updated network in shown in Figure 3.8 (a). Notice that the probability of
lung cancer increases slightly when we find out the patient has bronchitis. The
reason is that they have the common cause smoking history, and the presence of
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8(h) = (.25,.05)
B(h) = (.2,.8)
P(h|{b1}) = (.5556,.4444)

88,(h) = (.25,.05)
9B,(h) = (.2,.8)

8s,(h)=(1.1)
9B, (h) = (.05,.04)
8()=(11)

B(l) = (.00015,.08985)
P(I{b1}) = (.00167,.99833)

8(b) = (1,0)
B(b) = (1,0)
P(bl{b1}) = (1,0)
8s8.()=(1.1)

9B()) = (.00015,.08985)

()

8(c)=(1,1)
B(c) = (.00189,.08811)
P(cl{b1}) = (.021,.979)

(@)
8(h) = (.00544,.00100)

B(h) = (.2..8)
P(h|{b1,c1}) = (57672,.42328)

88,,(h) = (.25,.05)
9B,(h) = (.2,.8)

88, (h) = (.02174,.02003)
9B, (h) = (.05,.04)

8(b) = (1,0)
B(b) = (1,0)
P(bl{b1,c1}) = (1,0)

8(l) = (.6,.02)
B(l) = (.00015,.08985)
P(|l{b1,c1}) = (.04762,.95238)
88.(1) = (:6,.02)

9B()) = (.00015,.08985)

=

8(c) = (1,0)
B(c) = (1,0)
P(cl{b1,c1}) = (1,0)

(b)

Figure 3.8: Figure (a) shows the updated network after B is instantiated for bl.
Figure (b) shows the updated network after B is instantiated for b1 and C' is
instantiated for cl.
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bronchitis raises the probability of this cause, which in turn raises the probability
of its other effect lung cancer.

Example 3.5 Consider again the Bayesian network in Figure 3.7 (a). Suppose
B has already been instantiated for b1, and C is now instantiated for c1. That is,
we find out the patient has a positive chest X-ray. Next we show the steps in the
algorithm when the network’s values are updated according to this instantiation.

The call
update_tree((G, P),A,a,C,cl);
results in the following steps:

A={B}u{C}={B,C};
a={bl}uU{cl} = {bl,cl};

(c1) =1; w(cl) = 1; P(cll{bl,cl}) = 1; // Instantiate C' for cl.
(c2) = 0; w(c2) = 0; P(c2|{bl,cl}) = 0;

> >

send_A_msg(C,L);
The call
send_\_msg(C, L);
results in the following steps:

Ac(11) = P(cl]il)A(cl) + P(c2[I1)A(c2); // C sends L a X\ message.
= (:6)(1) + (4)(0) = .6;

Ac(12) = P(l[i2)A(cl) + P(c2|I2)A(2);
= (.02)(1) 4 .98(0) = .02;

A(lL) = Ae(11) = .6; // Compute L’s X\ values.
A(12) = A (12) = .02

P(I1{b1,c1}) = aA((1)w(I1) = a(.6)(.00015) = 000090
P(12/{b1,c1}) = aA(I2)7(12) = a(.02)(.08985) = .00180a;

P(I1[{b1,€1}) = —oa550taison = -04762;  // Compute P(I|{b1,c1}).
P(I2|{b1,c1}) = om0 dots0a = -95238;

send_A_msg(L, H);

The call
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send_\_msg(L, H);
results in the following steps:

Ar(h1) = P(I11|A1)A(11) + P(I12|h1)A(12); // L sends H a A
= (.003)(.6) +.997(.02) = .02174; // message.

Az(h2) = P(I1[R2)A(I1) + P(I2|h2)A(12);
= (.00005)(.6) 4 .99995(.02) = .02003;

A(R1) = Ap(h1)AL(h1) = (.25)(.02174) = .00544; // Compute H’s \
A(h2) = Mg (h2)AL(h2) = (.05)(.02003) = .00100; // values.

P(h1{b1,c1}) = aA(h1)m(h1) = a(.00544)(.2) = .00109q;
P(h2/{b1,c1}) = aA(h2)r(h2) = (.00100)(.8) = .00080a;

P(h1{b1,c1}) = oigoaroagson = -57672;  // Compute P(h|{D1,c1}).

P(h2[{b1,cl}) = .00109(1)3402.8(?008004 = .42328;

The updated network is shown in Figure 3.8 (b).

3.2.2 Inference in Singly-Connected Networks

A DAG is called singly-connected if there is at most one chain between any
two nodes. Otherwise, it is called multiply-connected. A Bayesian network is
called singly-connected if its DAG is singly-connected and is called multiply-
connected otherwise. For example, the DAG in Figure 3.1 is not singly-
connected because there are two chains between a number of nodes including,
for example, between B and L. The difference between a singly-connected DAG,
that is not a tree, and a tree is that in the latter a node can have more than
one parent. Figure 3.9 shows a singly-connected DAG that is not a tree. Next
we present an extension of the algorithm for trees to one for singly-connected
DAGs. Its correctness is due to the following theorem, whose proof is similar to
the proof of Theorem 3.1.

Theorem 3.2 Let (G, P) be a Bayesian network that is singly-connected, where
G = (V,E), and a be a set of values of a subset A C V. For each variable X,
define X\ messages, \ values, m messages, and 7 values as follows:

1. X\ messages:
For each child Y of X, for all values of x,

k
Ay (z) = Z l Z (P(y|x,w1,w2,...wk)Hﬂy(wi)>] Ay).

Yy Wiy, Wa,.. Wk

where W1, Wy, ..., Wy are the other parents of Y.
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Figure 3.9: A singly-connected network that is not a tree.

2. X values:
If X € A and X’s value is Z,

ANz) =
AMz) = 0 for x # 2.

If X ¢ A and X is a leaf, for all values of x,

If X ¢ A and X is a nonleaf, for all values of x,

Az) = H Au ().

UeCHx

where CHx is the set of all children of X.
3. ™ messages:

Let Z be a parent of X. Then for all values of z,

mx(2) =7(2) H Au(2).

UeCHz—{X}

4. m values:
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If X € A and X’s value is Z,

(&)
mx) = 0 for x # .

If X ¢ A and X is a root, for all values of x,

m(x) = P(z).

If X ¢ A, X is a nonroot, and Zy, Zs,... Z; are the parents of X, for
all values of x,

m(x) = Z (P($|Zl,22,...Zj)H’/TX(Zi)).

Z1,22,---Z5
5. Given the definitions above, for each variable X, we have for all values of
x7
P(z[a) = aA(z)m(z),
where o is a normalizing constant.

Proof. The proof is left as an exercise.

The algorithm based on the preceding theorem now follows.

Algorlthm 3.2 Inference-in-Singly-Connected-Networks

Problem: Given a singly-connected Bayesian network, determine the prob-
abilities of the values of each node conditional on specified values of the

nodes in some subset.

Inputs: Singly-connected Bayesian network (G, P), where G = (V,E), and a
set of values a of a subset A C V.

Outputs: The Bayesian network (G, P) updated according to the values in
a. The X\ and 7 values and messages and P(z|a) for each X € V are

considered part of the network.

void initial _net (Bayesian-network& (G, P) where G = (V, E),
set-of-variables& A, set-of-variable-values& a)
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{
A=g;a=g;
for (each X € V) {
for (each value z of X)
Az) = 1; // Compute A values.
for (each parent Z of X) // Does nothing if X is the a root.
for (each value z of Z)
Ax(z)=1; // Compute A messages.
for (each child Y of X)
for (each value z of X)
Ty (z) = 1; // Initialize 7 messages.

for each root R {
for each value of r {
P(rja) = P(r); // Compute P(r|a).
m(r) = P(r); // Compute R’s w values.

for (each child X of R)
send_m_msg(R, X);

void update tree (Bayesian-network (G, P) where G = (V, E),
set-of-variables& A, set-of-variable-values& a,
variable V', variable-value )

A=AU{V}; a=au{o}; // Add V to A.
A0) =1; 7(0) = 1; P(dla) = 1; // Instantiate V for 9.
for (each value of v # ) {

A(v) = 0; w(v) = 0; P(vfa) =0;

for (each parent Z of V such that Z ¢ A)
send A _msqg(V, Z);

for (each child X of V)
send_m_msg(V, X);

void send A msg(node Y, node X) // (G, P) is not shown as input.
{ // W;s are Y’s other parents.
for each value of z { // Y sends X a A message.

Yy | wi,we,.. wg 1=1

Ay(x):Z[ > (P<y|x,w1,w2,...wk>ﬁmwi))]ny);
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AMz)= I Av(x); // Compute X’s A values.
UeCHx
P(z|a) = a\(z)w(x); // Compute P(zx|a).

normalize P(x|a);
for (each parent Z of X such that Z ¢ A)
send_\_msg(X, Z);
for (each child W of X such that W #Y)
send_m_msg(X, W);
}

void send 7 _message(node Z, node X) // (G, P) is not shown as

{ // input.
for (each value of z)
mx(2) =m(2) 11 Ay (2); // Z sends X a 7 message.
YeCHz—{X}
if (X ¢ A) {
for (each value of x) { // the Z;s are X’s parents.
J
m(x)= > (P(x|zl,zg,...zj) I1 Wx(Zi)) ;
21,22,...25 1=1
P(z]a) = a\(z)m(x); // Compute X’s m values.
normalize P(z|a); // Compute P(z|a).

for (each child Y of X)
send_m_msg(X,Y);

if not (A\(z) =1 for all values of x) // Do not send A\ messages to
for (each parent W of X // X’s other parents if X and
such that W # Z and W ¢ A) // all of X’s descendents are
send_A_msg(X, W); // uninstantiated.

Notice that the comment in routine send-m-message says ‘do not send A\
messages to X'’s other parents if X and all of X’s descendents are uninstanti-
ated.” The reason is that, if X and all X’s descendents are uninstantiated, X
d-separates each of its parents from every other parent. Clearly, if X and all
X’s descendents are uninstantiated, then all X’s A values are still equal to 1.

Examples of applying the preceding algorithm follow.

Example 3.6 Consider the Bayesian network in Figure 3.10 (a). For the sake
of concreteness, suppose the variables are the ones discussed in Example 1.37.
That is, they represent the following:
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P(b1) = .005

P(f1) = .03

P(allb1,f1) =.992  p(ai|p2,fl) =.2

P(al|b1,f2) =.99 P(al|b2,f2) =.003

@)

8(b) = (.990,.009)
B(b) = (.005,.995)
P(bl{al}) = (.357,.643)

8(f) = (.204,.008)
B(f) = (.03,.97)

88, (b) = (.990,.009)

98,(b) = (.005,.995) 98,,(f) = (.03,.97)

8(@) = (1.0
B(a) = (1,0)
P(al{a1}) = (1,0)

(©

P(fl{al}) = (.429,.571)

88,,(f) = (.204,.008)

8(b) =(1,1)
B(b) = (.005,.995)

P(b| I = (.005,.995)

8(f) =(1,1)
B(f) = (.03,.97)

P 1) = (.03,.97)

88,(b) = (1,1)
98,,(b) = (.005,.995)

88,(f = (1,1)
9B,(f) = (.03,.97)

8(h)=(L,1)
B(h) = (.014,.986)

p(h| 1) = (.014,.986)

(b)

8(b) = (.992,.2)
B(b) = (.005,.995)
P(bl{al,f1}) = (.025,.975)

8(f) = (1.0)
B(f) = (1.0)
P(fl{al}) = (1,0)

88,(b) = (.992,.2)
98,,(b) = (.005,.995)

88,(f) = (.204,.008)
98,(1 = (1,0)

8(a) = (1.0
B(a) = (1,0)
P(al{a1}) = (1,0)

(d)

Figure 3.10: Figure (b) shows the initialized network corresponding to the
Bayesian network in Figure (a). Figure (c) shows the state of the network after
A is instantiated for al, and Figure (d) shows its state after A is instantiated

for al and F is instantiated for f1.
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Variable | Value | When the Variable Takes this Value
B bl A burglar breaks in house
b2 A burglar does not break in house
F f1 Freight truck makes a delivery
f2 Freight truck does not make a delivery
A al Alarm sounds
m2 Alarm does not sound

We show the steps when the network is initialized.

The call
wnitial _tree((G, P),A,a);

results in the following steps:

Af1) =1;M(f2) = 1
Aal) = 1;\(a2) = 1;
Aa(b1) = 1; 24 (b2) = 1;

ma(bl) =1;m4(b2) =1,
Ta(f1) = Lra(f2) = L;

P(b1|@) = P(b1) = .005;
P(b2|@) = P(b2) = .995;

m(b1) = P(b1) = .005;
m(b2) = P(b2) = .995;

send_m_msg(B,A);

P(fl]@) = P(f1) = .03;
P(f2|@) = P(f2) = .97;

m(f1) = P(f1) = .03;
m(f2) = P(f2) = .97;

send_7m_msg(F,A);

The call

// Compute \ values.

// Compute X\ messages.

// Compute m messages.

// Compute P(b|@).

// Compute B’s m values.

// Compute P(f|9).

// Compute F'’s m values.
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send_m_msg(B,A);

results in the following steps:

mA(bl) = mw(bl) = .005; // B sends A a ™ message.
74(b2) = 7(b2) = .995;
m(al) = P(al[bl, f1)wa(b1)wa(f1) + P(al|bl, f2)ma(b1)7A(f2)
+ P(al]b2, f1)ma(b2)ma(f1) + P(al[b2, f2)ma(b2)7a(f2)
= (-992)(.005)(1) + (.99)(.005)(1)
+ (:2)(.995)(1) + (.003)(.995)(1) = .212;

m(a2) = P(a2|bl, f1)ma(bL)wa(f1) + P(a2[b1, f2)ma(bl)7a(f2)
+ P(a2[b2, fL)ma(b2)ma(f1) + P(a2(b2, f2)7 4 (b2)m (f2)
= (.008)(.005)(1) + (.01)(.005)(1)
+ (.8)(.995)(1) + (.997)(.995)(1) = 1.788:;

P(al]|@) = aA(b1)m(bl) = «(1)(.202) = .212a; // Compute P(a|D).
P(a2|@) = aX(b2)7(b2) = a(1)(2.788) = 1.788«;  // This will not be

P(all@) = .212&241-21(.178811 = .106; // P(a|@) until A

P(al|@) = 5B = 894 // gets F’s m message.

The call
send_7m_msg(F,A);

results in the following steps:

(fl)fw(fl): // F sends A a
ma(f2) =n(f2) = // message.
m(al) = P(al|bl, f1)ma(b)ma(f1) + P(al|bl, f2)ma(b1)ma(f2)
+ (allblfl)m(b )ma(f1 )er(allb2 f2)ma(b2)mA(f2)
= (:992)(.005)(03) + (-99)(.005)(.97)
+ (.2)(.995)(03) + (.003)(.995)(.97) = .014;
m(a2) = P(a2[bl, f1)ma(b1)ma(f1) + P(a2(bl, f2)wa(b1)ma(f2)
+P(a2|b2,f1)7m( 2)ma(f1) + P(a2(b2, f2)ma(b2)74(f2)
= (.008)(.005)(.03) + (.01)(.005)(.97)
+ (:8)(:995)(.03) + (:997)(.995)(.97) = .986;
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P(al|@) = aA(bl)w(b]l) = «(1)(.014) = .014c;  // Compute P(a|D).
P(a2|2) = a(b2)7(b2) = a(1)(.986) = 986

P(al|@) = gz itess = 014
P(al|@) = % = .986;

The initialized network is shown in Figure 3.10 (b).
Example 3.7 Consider again the Bayesian network in Figure 3.10 (a). Sup-
pose A is instantiated for al. That is, Antonio hears his burglar alarm sound.

Next we show the steps in the algorithm when the network’s values are updated
according to this instantiation.

The call
update_tree((G, P),A,a, A, al);
results in the following steps:

A=oU{A}={A}
a=gU{al} ={alk;

Mal) =1; w(al) = 1; P(all{al}) = 1; // Instantiate A for al.
Aa2) = 0; w(a2) = 0; P(a2|{al}) =0;

send_\_msg(A, B);
send_\_msg(A, F);

The call
send_\_msg(A, B);
results in the following steps:

Aa(b1) = [P(al|bl, f1)ma(f1) + P(al|bl, f2)74(£2)] A(al)
= [P(a2]bl, f1)ma(f1) + P(a2[bl, f2)74(£2)] \(a2)
[(.992)(.03) + (.99)(.97] 1 4 [(.008)(.03) + (.01)(.97] 0

=.990; // A sends B a A\ message.

A (b2) = [P(al]b2, f1)ma(f1) + P(al|b2, f2)74(£2)] A(al)
= [P(a2]b2, f1)ma(f1) + P(a2[b2, f2)74(£2)] \(a2)
[(.2)(.03) + (.003)(.97] 1 + [(.8)(.03) + (.997)(.97] 0
=.009;
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Aa(
Aa(
P(b1[{al}) = aA(b1)m(b1) = (.990)(.005) = .0050;
P(b2[{al}) = aA(b2)7(h2) = (.009)(.995) = .0090;

1) =.990; // Compute B’s X values.

b
b2) = .009;

P(b1|{al}) = Gtiosmen = -357; // Compute P(b|{al}).

Pb2[{al}) = .005&02?(?00% = .643;

The call
send_\_msg(A, F);
results in the following steps:

Aa(f1) = [P(al|bl, f1)ma(b1) + P(al|b2, f1)7 4 (b2)] AM(al)
= [P(a2[bl, f1)7o(b1) + P(a2|b2, f1)7 4(b2)] A(a2
= [(.992)(.005) + (.2)(.995)] 1 + [(.008)(.005) + (.8)(.995)] 0
= .204; // A sends F' a \ message.

b1) + P(al|b2, f2)ra
b1) + P(a2[b2, f2)ma
03)(.995)] 1 + [(.01)(.

(b2)] \al)
(02)] \(a2)
005) + (.997)(.995] 0

Aa(f2) = [P(al|bl, f2)7a(
[ a2|b1 f2)7TA
= [(.99)(.005) + (.
= .008;

(
0

A(f1) = Aa(f1) = .204; // Compute F’s \ values.
A(f2) = Aa(f2) = .008;

P(f1){a1}) = aA(f1)7(f1) = a(.204)(.03) = .0060;

P(f2{a1}) = aA(f2)m(f2) = a(.008)(.97) = 008«

P(f1l{al}) = 5z02locsa = 429; // Compute P(f|{al}).
P(f2|{a1}) = % = 571,

The state of the network after this instantiation is shown in Figure 3.10 (c).
Notice the probability of a freight truck is greater than that of a burglar due to
the former’s higher prior probability.

Example 3.8 Consider again the Bayesian network in Figure 3.10 (a). Sup-
pose after A is instantiated for al, F is instantiated for f1. That is, Antonio
sees a freight truck in back of his house. Next we show the steps in the algorithm
when the network’s values are updated according to this instantiation.
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The call
update_tree((G, P),A,a, F, f1);
results in the following steps:

A={A}U{F} ={A,F};
a={al}U{f1} ={al, f1}

A(f1) =1;7(f1) =1; P(f1{f1}) = 1; // Instantiate F for f1.
A(f2) = 0; m(f2) = 0; P(f2[{f1}) = 0;

send_7m_msg(F,A);
The call
send_m_msg(F,A);
results in the following steps:

ma(fl)=n(f1)=1; // F sends A a ™ message.
Ta(f2) =7(f2) =0;

send_\_message(A, B);
The call
send_\_msg(A, B);
results in the following steps:
Aa(b1) = [P(alfbl, f1)ma(f1) + Plallb, f2)ma(f2)] Aal)

= [P(a2]bl, f1)ma(f1) + P(a2[bl, f2)74(£2)] \(a2)
[(.992)(1) + (.99)(0)] 1 + [(.008)(1) + (.01)(0)] 0

.992; // A sends B a A\ message.
Aa(02) = [P(al|b2, f1)wa(f1) + P(al|b2, f2)7 o(f2)] AM(al)
= [P(a2]b2, f1)mA(f1) + P(a2|b2, f2)74(f2)] M(a2)
= [(:2)(1) + (.003)(0)] 1 + [(.8)(.03) + (.997)(.97] 0
A(b1) = Aa(bl) = .992; // Compute B’s A values.
A(B2) = Aa(02) = .2;

P(b1|{al, f1}) = aA(b1)7w(b1) = (.992)(.005) = .005q;
Pb2[{al, f1}) = aA(b2)7(b2) = a(.2)(.995) = .1990;
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P(b1|{al, f1}) = 55528550 = -025;  // Compute P(b|{al, f1}).
P2/{al, f1}) = 7_005'(139_?99(1 = .975;

The state of the network after this instantiation is shown in Figure 3.10 (d).
Notice the discounting. The probability of a burglar drops from .357 to .025
when Antonio sees a freight truck in back of his house. However, since the two
causes are not mutually exclusive conditional on the alarm, it does not drop to
0. Indeed, it does not even drop to its prior probability .005.

3.2.3 Inference in Multiply-Connected Networks

So far we have considered only singly-connected networks. However, clearly
there are real applications in which this is not the case. For example, recall the
Bayesian network in Figure 3.1 is not singly-connected. Next we show how to
handle multiply-connected using the algorithm for singly-connected networks.
The method we discuss is called conditioning.

We illustrate the method with an example. Suppose we have a Bayesian
network containing a distribution P, whose DAG is the one in Figure 3.11
(a), and each random variable has two values. Algorithm 3.2 is not directly
applicable because the network is multiply-connected. However, if we remove
X from the network, the network becomes singly connected. So we construct
two Bayesian network, one of which contains the conditional distribution P’ of P
given X = x1 and the other contains the conditional distribution P” of P given
X = z2. These networks are shown in Figures 3.11( b) and (c) respectively.
First we determine the conditional probability of every node given its parents
for each of these network. In this case, these conditional probabilities are the
same as the ones in our original network except for the roots Y and Z. For
those we have

P'(yl) = P(yl|z1) P'(21) = P(z1]z1)

P"(y1) = P(y1|x2) P'(21) = P(21]x2).

We can then do inference in our original network by using Algorithm 3.2 to do
inference in each of these singly-connected networks. The following examples
illustrate the method.

Example 3.9 Suppose U is instantiated for ul in the network in Figure 3.11
(a) . For the sake of illustration, consider the conditional probability of W given
this instantiation. We have

P(wllul) = P(wl|zl,ul)P(x1|ul) + P(wl|z2,ul)P(22|ul).

The values of P(wl|zl,ul) and P(wl|x2,ul) can be obtained by applying Algo-
rithm 3.2 to the networks in Figures 3.11( b) and (c) respectively. The value of
P(zilul) is given by

P(zilul) = aP(ullxi)P(xi),
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° X =x1 X = X2
P'(yl) =P(yl|x1) P'(z1) =P(z1|x1) P"(yl) =P(y1|x2) P"(z1) =P(z1|x2)

(@) (b) (©)

Figure 3.11: A multiply-connected network is shown in (a). The singly-
connected networks obtained by instantiating X for x1 and for 22 are shown in
(b) and (c) respectively.

where is & a normalizing constant equal to 1/P(ul). The value of P(x1) is stored
in the network since X is a root, and the value of P(ul|xi) can be obtained by
applying Algorithm 3.2 to the networks in Figures 8.11( b) and (c). Thereby,
we can obtain the value of P(wl|ul). In the same way, we can obtain the
conditional probabilities of all non-conditioning variables in the network. Note
that along the way we have already computed the conditional probability (namely,
P(xzi|ul)) of the conditioning variable.

Example 3.10 Suppose U is instantiated for ul and Y is instantiated for yl
in the network in Figure 3.11 (a). We have

P(wllul,yl) = P(wllzl,ul,y1)P(x1|ul,yl) + P(wl|x2,ul,y1)P(x2]ul,yl).

The values of P(wl|z1,ul,yl) and P(wl|z2,ul,yl) can be obtained by apply-
ing Algorithm 3.2 to the networks in Figures 8.11( b) and (¢). The value of
P(xilul,yl) is given by

P(zi|ul,yl) = aP(ul, yl|zi) P (i),

where is o a normalizing constant equal to m. The value of P(xi) is stored
in the network since X is a root. The value of P(ul,yl|xi) cannot be computed
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directly using Algorithm 3.2. But the chain rule enables us to obtain it with that
algorithm. That is,

P(ul,yl|zi) = P(ullyl, zi)P(yl|xi).

The values on the right in this equality can both be obtained by applying Algo-
rithm 3.2 to the networks in Figures 3.11( b) and (c).

The set of nodes, on which we condition, is called a loop-cutset. It is not
always possible to find a loop-cutset which contains only roots. Figure 3.16
in Section 3.6 shows a case in which we cannot. [Suermont and Cooper, 1990]
discuss criteria, which must be satisfied by the conditioning nodes, and they
present a heuristic algorithm for finding a set of nodes which satisfy these cri-
teria. Furthermore, they prove the problem of finding a minimal loop-cutset is
N P-hard.

The general method is as follows. We first determine a loop-cutset C. Let E
be a set of instantiated nodes, and let e be their set of instantiations. Then for
each X € V —{EUC}, we have

P(xi) = Z P(xile,c)P(cle),

where the sum is over all possible values of the variables in C. The values of
P(zile,c) are computed using Algorithm 3.2. We determine P(c|e) using this
equality:

P(cle) = aP(e|c)P(c).

To compute P(e|c) we first applying the chain as follows. If e = {eq, ..., ex),
P(e|c) = P(exr|er—1,ex—2;-e1,¢) Plex_1lex—2, ...e1,c) - - Pleg|c).

Then Algorithm 3.2 is used repeatedly to compute the terms in this product.
The value of P(c) is readily available if all nodes in C are roots. As mentioned
above, in general, the loop-cutset does not contain only roots. A way to compute
P(c) in the general case is developed in [Suermondt and Cooper, 1991].

Pearl [1988] discusses another method for extending Algorithm 3.2 to handle
multiply-connected network called clustering.

3.2.4 Complexity of the Algorithm

Next we discuss the complexity of the algorithm. Suppose first the network is
a tree. Let

n = the number of nodes in the tree.

k = the maximum number of values for a node.

Then there are n—1 edges. We need to store at most k2 conditional probabilities
at each node, two k-dimensional vectors (the 7 and A values) at each node, and
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two k-dimensional vectors (the 7 and A messages) at each edge. Therefore, an
upper bound on the number of values stored in the tree is

n(k? +2k) +2(n — 1)k € 0(nk?).

Let
¢ = maximum number of children over all nodes.

Then at most the number of multiplications needed to compute the conditional
probability of a variable is k to compute the 7 message, k* to compute the
A\ message, k2 to compute the 7 value, kc to compute the \ value, and %k to
compute the conditional probability. Therefore, an upper bound on the number
of multiplications needed to compute all conditional probabilities is

n (2k* + 2k + kc) € 6(nk* + nkc).

It is not hard to see that, if a singly-connected network is sparse (i.e. each node
does not have many parents), the algorithm is still efficient in terms of space
and time. However, if a node has many parents, the space complexity alone
becomes intractable. In the next section, we discuss this problem and present a
model that solves it under certain assumptions. In Section 3.6, we discuss the
complexity in multiply-connected networks.

3.3 The Noisy OR-Gate Model

Recall that a Bayesian network requires the conditional probabilities of each
variable given all combinations of values of its parents. So, if each variable has
only two values, and a variable has p parents, we must specify 2P conditional
probabilities for that variable. If p is large, not only does our inference algorithm
become computationally unfeasible, but the storage requirements alone become
unfeasible. Furthermore, even if p is not large, the conditional probability of
a variable given a combination of values of its parents is ordinarily not very
accessible. For example, consider the Bayesian network in Figure 3.1 (shown at
the beginning of this chapter). The conditional probability of fatigue, given both
lung cancer and bronchitis are present, is not as accessible as the conditional
probabilities of fatigue given each is present by itself. Yet we need to specify this
former probability. Next we develop a model which requires that we need only
specify the latter probabilities. Not only are these probabilities more accessible,
but there are only a linear number of them. After developing the model, we
modify Algorithm 3.2 to execute efficiently using the model.

3.3.1 The Model

This model, called the noisy OR-gate model, concerns the case where the
relationships between variables ordinarily represent causal mechanism, and each
variable has only two values. The variable takes its first value if the condition
is present and its second value otherwise. Figure 3.1 illustrates such a case.
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For example, B (bronchitis) takes value bl if bronchitis present and value b2
otherwise. For the sake of notational simplicity, in this section we show the
values only as 1 and 2. So B would take value 1 if bronchitis were present and
2 otherwise.

We make the following three assumptions in this model:

1. Causal inhibition: This assumption entails that there is some mecha-
nism which inhibits a cause from bringing about its effect, and the pres-
ence of the cause results in the presence of the effect if and only if this
mechanism is disabled (turned off).

2. Exception independence: This assumption entails that the mechanism
that inhibits one cause is independent of the mechanism that inhibits
another causes.

3. Accountability: This assumption entails that an effect can happen only
if at least one of its causes is present and is not being inhibited. Therefore,
all causes which are not stated explicitly must be lumped into one unknown
cause.

Example 3.11 Consider again Figure 3.1. Bronchitis (B) and lung cancer
(C') both cause fatigue (F'). Causal inhibition implies that bronchitis will result
in fatigue if and only if the mechanism, that inhibits this from happening, is
not present. FException independence implies that the mechanism that inhibits
bronchitis from resulting in fatigue behaves independently of the mechanism that
inhibits lung cancer form resulting in fatigue. Since we have listed no other
causes of fatigue in that figure, accountability implies fatigue cannot be present
unless at least one of bronchitis or lung cancer is present. Clearly, to use this
model in this example, we would have to add a third cause in which we lumped
all other causes of fatigue.

Given the assumptions in this model, the relationships among the variables
can be represented by the Bayesian network in Figure 3.12. That figure shows
the situation where there are n causes X, Xo,... and X,, of Y. The variable
I; is the mechanism that inhibits X;. The I;’s are independent owing to our
assumption of exception independence. The variable A; is on if and only if X
is present (equal to 1) and is not being inhibited. Owing to our assumption of
causal inhibition, this means Y should be present (equal to 1) if any one of the
Aj’s is present. Therefore, we have

P(Y =2|A; = ON for some j) = 0.

This is why it called an ‘OR-gate’ model. That is, we can think of the A;’s
entering an OR-gate, whose exit feeds into Z (It is called ‘noisy’ because of the
I;’s). Finally, the assumption of accountability implies we have

P(Y = 2|4, = OFF,A, = OFF,...A, = OFF) = 1.

We have the following theorem:
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P(1,=ON) = q, P(,=ON) =q,

P(A,=ON| I,=OFF X,=1) = 1 P(A,=ON| I, =OFF X =1) = 1

P(A,=ON| 1,=OFF X,=2) = 0 @ @ P(A,=ON| I, =OFF,X =2) = 0
P(A,=ON| I,=ON,X,=1) = 0

P(A,=ON| [.=ON,X =1) = 0
P(A,=ON| ,=ON,X,=2) = 0 P(A,=ON| [.=ON,X =2) = 0

P(Y=2|A,=OFF,A,=OFF,..A;=OFF) = 1
P(Y=2|A;=ON for some j) = 0

Figure 3.12: A Bayesian network representing the assumptions in the noisy
OR-gate model.

Theorem 3.3 Suppose we have a Bayesian network representing the Noisy Or-
gate model (i.e. Figure 3.12). Let

W = {Xl,Xg,...Xn},
and let
w = {r1,x9,..2p}

be a set of values of the variables in W. Furthermore, let S is a set of indices
such j €S if and only if X; = 1. That is,

S ={j such that X; = 1}.
Then

PY =2W=w) =[] &
j€ES

Proof. We have
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P(Y =2/W =w)

Z P(Y =2|4) = a1,...4, = a,)P(A1 = a1,...4,, = a,|W =w)

> P(Y =24 =ay, .. Ay = a,) [[ P(4; = ;| X; = )
ai Ay 7
[1P4; = OFRX; = ;)
J
[[IP(A; = OFFX; = z;,I; = ON)P(I; = ON) +
zi(Aj = OFF|X; = x;,1; = OFF)P(I; = OFF))

[Tt@) +10—=g)| |T]1(a) +001 —q5)
s jes

11 {Ile]| =11

_jgs jES =S

Our actual Bayesian network contains Y and the X;’s but it does not contain
the I;’s or A;’s. In that network, we need to specify the conditional probability
of Y given each combination of values of the X;’s. Owing to the preceding
theorem, we need only specify the values of ¢; for all j. All necessary conditional
probabilities can then be computed using Theorem 3.3. Instead, we often specify

pj =1—gqj,
which is called the causal strength of X for Y. Theorem 3.3 implies

This value is relatively accessible. For example, we may have a reasonably large
database of patients, whose only disease is lung cancer. To estimate the causal
strength of lung cancer for fatigue, we need only determine how many of these
patients are fatigued. On the other hand to directly estimate the conditional
probability of fatigue given lung cancer, bronchitis, and other causes, we would
need databases containing patients with all combinations of these diseases.

Example 3.12 Suppose we have the Bayesian network in Figure 3.13, where
the causal strengths are shown on the edges. Owing to Theorem 3.3,

PY =2[X1=1,X2=2,X3=1,X4=1) = (1-pi)(1—p3)(1—ps)
= (1-"7(1-.6)(1-.9)
= 012

So
PY=1X1=1,X=2X3=1,X;, =1) =1 —.012 = .988.
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Figure 3.13: A Bayesian network using the Noisy OR~gate model.

3.3.2 Doing Inference With the Model

Even though Theorem 3.3 solves our specification problem, we still need to
compute possibly an exponential number of values to do inference using Algo-
rithm 3.2. Next we modify that algorithm to do inference more efficiently with
probabilities specified using the noisy OR-gate model.

Assume the variables satisfy the noisy OR~gate model, and Y has n parents
X1, Xy, ... and X,,. Let p; be the causal strength of X; for Y, and ¢; = 1 — p;.
The situation with n = 4 is shown in Figure 3.13. Before proceeding, we alter
our notation a little. That is, to denote that X; is present, we use xj instead
of 1; to denote that X; is absent, we use z; instead of 2.

Consider first the A\ messages. Using our present notation, we must do the
following computation in Algorithm 3.2 to calculate the A message Y sends to

Xj

Ay () :Z Z P(y|x1,x2,...$n)H7ry(:ri) Ay).

Yy L1y Lj—1,Tj41,---Tm ’L;éj

We must determine an exponential number of conditional probabilities to do
this computation. It is left as an exercise to show that, in the case of the Noisy
OR-gate model, this formula reduces to the following formulas:

Av () = Ay )g; Py + My™)(1 - ¢;P)) (3.4)

Av (@) =AMy ) B+ Ay )1 - P)) (3.5)

where
Py =] = pimy ().
i#£]
Clearly, this latter computation only requires that we do a linear number of
operations.
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Next consider the 7 values. Using our present notation, we must do the
following computation in Algorithm 3.2 to compute the 7 value of Y:

m(y) = Z P(y|x1,x2,...xn)H7ry(:rj)

T1,To,...Tp

We must determine an exponential number of conditional probabilities to do
this computation. It is also left as an exercise to show that, in the case of the
Noisy OR~gate model, this formula reduces to the following formulas:

[11 - pym (@) (36)

H (1 — pymy (). (3.7)

Again, this latter computation only requires that we do a linear number of
operations.

3.3.3 Further Models

A generalization of the Noisy OR-gate model to the case of more than two
values appears in [Srinivas, 1993]. Other models for succinctly representing the
conditional distributions include the sigmoid function (See [Neal, 1992].) and
the logit function (See [McLachlan and Krishnan, 1997].) Another approach to
reducing the number of parameter estimates is the use of embedded Bayesian
networks, which is discussed in [Heckerman and Meek, 1997]. Note that their
use of the term ‘embedded Bayesian network’ is different than our use in Chapter
6.

3.4 Other Algorithms that Employ the DAG

Shachter [1988] created an algorithm which does inference by performing arc
reversal /node reduction operations in the DAG. The algorithm is discussed
briefly in Section 5.2.2; however, you are referred to the original source for a
detailed discussion.

Based on a method originated in [Lauritzen and Spiegelhalter, 1988], Jensen
et al [1990] developed an inference algorithm that involves the extraction of an
undirected triangulated graph from the DAG in a Bayesian network, and the
creation of a tree whose vertices are the cliques of this triangulated graph. Such
a tree is called a junction tree.. Conditional probabilities are then computed
by passing messages in the junction tree. You are referred to the original source
and to [Jensen, 1996] for a detailed discussion of this algorithm, which we call
the Junction tree Algorithm.



162 CHAPTER 3. INFERENCE: DISCRETE VARIABLES

Figure 3.14: A DAG.

3.5 The SPI Algorithm

The algorithms discussed so far all do inference by exploiting the conditional
independencies entailed by the DAG. Pearl’s method does this by passing mes-
sages in the original DAG, while Jensen’s method does it by passing messages in
the junction tree obtained from the DAG. D’Ambrosio and Li [1994] took a dif-
ferent approach. They developed an algorithm which approximates finding the
optimal way to compute marginal distributions of interest from the joint prob-
ability distribution. They call this symbolic probabilistic inference (SPI).
First we illustrate the method with an example.

Suppose we have a joint probability distribution determined by conditional
distributions specified for the DAG in Figure 3.14 and all variables are binary.
Then

P(x,y, z,w,t) = P(t|z)P(wl|y, 2) P(y|z) P(z|x) P(x).

Suppose further we wish to compute P(t|w) for all values of T and W. We have

_ Ptw) Dy Play zwt)
P(t|w) B P(w) B Zm,y,z,t P(%, Y,z w, t)
>ay.: P(tl2)P(wly, 2) P(y|z) P(z|z) P (x)

Day.t P(H2)P(wly, 2) P(ylx) P(z|z) P(x)

To compute the sums in the numerator and denominator of the last expression
by the brute force method of individually computing all terms and adding them
is computationally very costly. For specific values of T' and W we would have
to do (23) 4 = 32 multiplications to compute the sum in the numerator. Since
there are four combinations of values of T" and W, this means we would have
have to do 128 multiplications to compute all numerators. We can save time by
not re-computing a product each time it is needed. For example, suppose we do
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the multiplications in the order determined by the factorization that follows:

P(t,w) = Y [[[[P(tz) P(wly, 2)] P(yla)] P(z]a)] P(x)] (3-8)

x,Y,z

The first product involves 4 variables, which means 2* multiplications are re-
quired to compute its value for all combinations of the variables; the second,
third and fourth products each involve 5 variables, which means 2° multiplica-
tions are required for each. So the total number of multiplications required is
112, which means we saved 16 multiplications by not recomputing products.
We can save more multiplications by summing over a variable once it no longer
appears in remaining terms. Equality 3.8 then becomes

P(t,w)=>_|P(x))

x z

P(zla) ) [[P(tIZ)P(wa,z)]P(ylx)]H - 39

Y

The first product again involves 4 variables and requires 2* multiplications, and
the second again involves 5 variables and requires 2° multiplications. However,
we sum gy out before taking the third product. So it involves only 4 variables
and requires 24 multiplications. Similarly, we sum z out before taking the fourth
product, which means it only involves 3 variables and requires 2% multiplications.
Therefore, the total number of multiplications required is only 72.

Different factorizations can require different numbers of multiplications. For
example, consider the factorization that follows:

P(t,w) = Z P(t|2) Z

z Y

P(wly, )y [P(ylz) [P(]a) P(2)]

x

] . (3.10)

It is not hard to see that this factorization requires only 28 multiplications.
To minimize the computational effort involved in computing a given marginal
distribution, we want to find the factorization that requires the minimal number
of multiplications. D’Ambrosio and Li [1994] called this the Optimal factoring
Problem. They formulated the problem for the case of binary variables (There
is a straightforward generalization to multinomial variables.). After developing
the formalization, we apply it to probabilistic inference.

3.5.1 The Optimal Factoring Problem
We start with a definition.

Definition 3.1 A factoring instance F = (V,S,Q) consists of

1. a set V of size n;
2. A setS of m subsets {S{l}, . ..S{m}} of V;
3. A subset Q CV called the target set.
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Example 3.13 The following is a factoring instance:

1. n=>5andV = {z,y,z,w,t}.

2. m=2>5 and
S{l} = {12}
5{2} = {a:, Z}
Sy = Amy}
Sy = {y,zw}
5{5} = {Z, t}.

3. Q=Aw,t}.

Definition 3.2 Let S = {S1},...Sqmy }- A factoring o of S is a binary tree
with the following properties:

1. All and only the members of S are leaves in the tree.
2. The parent of nodes Sy and Sy is denoted Sy .
3. The root of the tree is Sy -

We will apply factorings to factoring instances. However, note that a factor-
ing is independent of the actual values of the Sy;y in a factoring instance.

Example 3.14 Suppose S = {S{l}, .. 5{5}}. Then three factorings of S appear
in Figure 3.15.

Given a factoring instance F = (V,S, Q) and a factoring « of S, we compute
the cost p,, (F) as follows. Starting at the leaves of o, we compute the values
of all nodes according to this formula:

Siuy=S1US; — Wy

where
Wiy ={v : (forallk¢ | UJ, v ¢ Spy)and (v¢ Q)}.

As the nodes’ values are determined, we compute the cost of the nodes according
to this formula:

js (S{j}) =0 for 1<7<m

and
Lo, (S103) =ty (S1) + iy, (Sy) + 215951,

where || is the number of elements in the set. Finally, we set

Ha (IF) = My (S{l,m,}) .
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( (b)

(©

a)

Figure 3.15: Three factorings of S = {S{l}, .. 5{5}}.
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Example 3.15 Suppose we have the factoring instance F in Example 3.13.
Given the factoring « in Figure 3.15 (a), we have

Srey = Sy USpay —Wiigy
= {ZI)}U{J),Z}*@Z{ZI),Z}

Si1237 = Sq1,2yUSg3y —Wyi23)
= {%,Z}U{w,y}f{iﬁ}:{y, Z}

S1234) = Sq1,23yUSqay —Wyi2,34)
= {y,Z}U{y,Z,UJ}*{ZI?,y}:{Z,"UJ}

Sti2345 = S{1,23.4)USsy — Wi 2345
= {Z,W}U{Z,t}*{iﬁ,y, Z}:{wat}

Next we compute the cost:

to (Spi2y) = Ha (Spy) + ha (Sp2y) +22
— 04+0+4=4
to (Spizay) = ta (Spzy) + sa (Spay) +2°
= 44+0+8=12
Ha (5{1,2,3,4}) = Yy (5{1,2,3}) + g (5{4}) + 23
= 124+048=20
Mo (5{1,2,3,4,5}) = Hq (5{1,2,3,4}) + e (5{5}) +23

20+0+ 8 =28.

So
Po (F) = i, (5{1,2,3,4,5}) =28

Example 3.16 Suppose again we have the factoring instance F in Example
3.13. Given the factoring (8 in Figure 3.15 (b), we have

S{asy = S{apUSgs —Wiasy
= {y,z,w}U{zt} — 2 ={y,z,w,t}

S350 = Sqasy USgzy —Wysas)
= {yazawat}u{xay}i{y}:{xazawat}
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Si2345) = Si34,5)USp2y —Wia345)
{ZII, Z, W, t} U {13, Z} - {ya Z} = {13, w, t}

S{1,23450 = Sy2,345 USpy — Wi 2345)
= {ZI),w,t}U{i?}* {li,y,Z} = {wat}

It is left as an exercise to show

pg (F) = 72.

Example 3.17 Suppose we have the following factoring instance ¥ :

1. n=5and V = {x,y, z, w,t}.

2. m=2>5 and

Sy = =}

Sy = {y}

Sy = {2}

Sqay = {w}

S5y = Amwy,z,w,t}.
3. Q= {t}.

Given the factoring v in Figure 3.15 (¢), we have

Sr2r = S USgzy —Wiigy
= {z}U{y} -2 ={z,y}

Sgaar = SgapUSpy —Wysgy
= {u{w} -2 ={zw}

Sizasr = Sy343USgsy —Wysa 5y
= {Z, w} U {a:, Y,z,w, t} - {Z, w} = {12, Y, t}

S{1,2345) = Sq12yUSq345 —Wii2345)
= {z,y} Uiz, yt} —{z,y,2,w} = {t}.
Next we compute the cost:

fy (Sioy) =y (Spy) + 1y (Spey) +22
0+0+4—4
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fy (Szay) = my (Spay) + 1y (Spay) +22
— 040+44=4
1y (Sgzasy) = 1y (Ssay) + 1y (Sgsy) +2°
— 440432=236
Hoy (5{172737475}) = Hy (5{172}) + iy (5{37475}) +2°
— 4436+8=48.

So
ty (F) = 1, (Sq1,23.4,5)) = 48.

Example 3.18 Suppose we have the factoring instance ' in Example 3.17. It
is left as an exercise to show for the factoring 3 in Figure 3.15 (b) that

115 (F') = 60

We now state the Optimal factoring Problem. Namely, the Optimal fac-
toring Problem is to find a factoring « for a factoring instance F such that
1, (F) is minimal.

3.5.2 Application to Probabilistic Inference

Notice that the cost u,, (F), computed in Example 3.15, is equal to the number

of multiplications required by the factorization in Equality 3.10; and the cost
K (F), computed in Example 3.16, is equal to the number of multiplications
required by the factorization in Equality 3.9. This is no coincidence. We can
associate a factoring instance with every marginal probability computation in a
Bayesian network, and any factoring of the set S in the instance corresponds to
a factorization for the computation of that marginal probability. We illustrate
the association next. Suppose we have the Bayesian network in Figure 3.14.
Then

P(z,y, z,w,t) = P(t|z)P(wly, ) P(y|z) P(z|x) P(x).

Suppose further that as before we want to compute P(w,t) for all values of W
and T. The factoring instance corresponding to this computation is the one
shown in Example 3.13. Note that there is an element in S for each conditional
probability expression in the product, and the members of an element are the
variables in the conditional probability expression. Suppose we compute P(w,t)
using the factorization in Equality 3.10, which we now show again:

P(t,w) = Z P(t]2) Z

z Y

P(wly, 2) ) [P(yle) [P(z]2)P()]]

x
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The factoring « in Figure 3.15 (a) corresponds to this factorization. Note that
the partial order in « of the subsets is the partial order in which the correspond-
ing conditional probabilities are multiplied. Similarly, the factoring 8 in Figure
3.15 (b) corresponds to the factorization in Equality 3.9.

D’Ambrosio and Li [1994] show that, in general, if F is the factoring instance
corresponding to a given marginal probability computation in a Bayesian net-
work, then the cost u,, (F) is equal to the number of multiplications required by
the factorization to which « corresponds. So if we solve the Optimal factoring
Problem for a given factoring instance, we have found a factorization which
requires a minimal number of multiplications for the marginal probability com-
putation to which the factoring instance corresponds. They note that each
graph-based inference algorithms corresponds to a particular factoring strategy.
However, since a given strategy is constrained by the structure of the original
DAG (or of a derived junction tree), it may be hard for the strategy to find an
optimal factoring.

D’Ambrosio and Li [1994] developed a linear time algorithm which solves the
Optimal factoring Problem when the DAG in the corresponding Bayesian net-
work is singly-connected. Furthermore, they developed a 6(n?) approximation
algorithm for the general case.

The total computational cost when doing probabilistic inference using this
technique includes the time to find the factoring (called symbolic reasoning)
and the time to compute the probability (called numeric computation). The
algorithm for doing probabilistic inference, which consists of both the symbolic
reasoning and the numeric computation, is called the Symbolic probabilistic
inference (SPI) Algorithm.

The Junction tree Algorithm is considered overall to be the best graph-based
algorithm (There are, however, specific instances in which Pearl’s Algorithm is
more efficient. See [Neapolitan, 1990] for examples.). If the task is to com-
pute all marginals given all possible sets of evidence, it is believed one cannot
improve on the Junction tree Algorithm (ignoring factorable local dependency
models such as the noisy OR-gate model). However, even that has never been
proven. Furthermore, it seems to be a somewhat odd problem definition. For
any specific pattern of evidence, one can often do much better than the generic
evidence-independent junction tree. D’Ambrosio and Li [1994] compared the
performance of the SPI Algorithm to the Junction tree Algorithm using a num-
ber of different Bayesian networks and probability computations, and they found
that the SPI Algorithm performed dramatically fewer multiplications. Further-
more, they found the time spent doing symbolic reasoning by the SPI Algorithm
was insignificant compared to the time spent doing numeric computation.

Before closing, we note that SPI is not the same as simply eliminating vari-
ables as early as possible. The following example illustrates this:

Example 3.19 Suppose our joint probability distribution is
P(tlz,y, z,w)P(w)P(2)P(y) P(x),

and we want to compute P(t) for all values of T. The factoring instance F' in
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Ezample 3.17 corresponds to this marginal probability computation. The follow-
ing factorization eliminates variables as early as possible:

S r@ Y P Y
T Yy z
The factoring 3 in Figure 3.15 (b) corresponds to this factorization. As shown
in Example 3.18 pg (F') = 60, which means this factorization requires 60 multi-
plications.
On the other hand, consider this factorization:

The factoring ~ in Figure 3.15 (c) corresponds to this factorization. As shown
in BExample 3.17 i, (F') = 48, which means this factorization requires only 48
multiplications.

P(2) 3 [P(tle, . 2, w)P(w)

w

P@)Py)] S S [Pt y, 2 w) [P(w)P(2)]

Bloemeke and Valtora [1998] developed a hybrid algorithm based on the
junction tree and symbolic probabilistic methods.

3.6 Complexity of Inference

First we show that using conditioning and Algorithm 3.2 to handle inference
in a multiply-connected network can sometimes be computationally unfeasible.
Suppose we have a Bayesian network, whose DAG is the one in Figure 3.16.
Suppose further each variable has two values. Let k be the depth of the DAG.
In the figure, £ = 6. Using the method of conditioning presented in Section
3.2.3, we must condition on k/2 nodes to render the DAG singly connected.
That is, we must condition on all the nodes on the far left side or the far right
side of the DAG. Since each variable has two values, we must therefore perform
inference in 0(2%/2) singly-connected networks in order to compute P(y1|x1).
Although the Junction tree and SPI Algorithms are more efficient than
Pearl’s algorithm for certain DAGs, they too are worst-case non-polynomial
time. This is not surprising since the problem of inference in Bayesian networks
has been shown to be NP-hard. Specifically, [Cooper, 1990] has obtained the
result that, for the set of Bayesian networks that are restricted to having no
more than two values per node and no more than two parents per node, with no
restriction on the number of children per node, the problem of determining the
conditional probabilities of remaining variables given certain variables have been
instantiated, in multiply-connected networks, is #P-complete. # P-complete
problems are a special class of N P-hard algorithms. Namely, the answer to a
# P-complete problem is the number of solutions to some N P-complete problem.
In light of this result, researchers have worked on approximation algorithms for
inference Bayesian networks. We show one such algorithm in the next chapter.
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-

depth = 6

o

Figure 3.16: Our method of conditioning will require exponential time to com-
pute P(yl|z1).

3.7 Relationship to Human Reasoning

First we present the causal network model, which is a model of how humans
reason with causes. Then we show results of studies testing this model.

3.7.1 The Causal Network Model

Recall from Section 1.4 that if we identify direct causes-effect relationships
(edges) by any means whatsoever, draw a causal DAG using the edges identi-
fied, and assume the probability distribution of the variables satisfies the Markov
condition with this DAG, we are making the causal Markov assumption. We
argued that, when causes are identified using manipulation, we can often make
the causal Markov assumption, and hence the casual DAG, along with its con-
ditional distributions, constitute a Bayesian network that pretty well models
reality. That is, we argued that relationships, which we objectively define as
causal, constitute a Bayesian network in external reality. Pearl [1986, 1995]
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burglar earthquake

foorprints alarm

Figure 3.17: A causal network.

takes this argument a step further. Namely, he argues that a human internally
structures his or her causal knowledge in his or her personal Bayesian network,
and that he or she performs inference using that knowledge in the same way
as Algorithm 3.2. When the DAG in a Bayesian network is a causal DAG, the
network is called a causal network. Henceforth, we will use this term, and we
will call this model of human reasoning the causal network model. Pearl’s
argument is not that a globally consistent causal network exists at a cognitive
level in the brain. ‘Instead, fragmented structures of causal organizations are
constantly being assembled on the fly, as needed, from a stock of functional
building blocks’ - [Pearl, 1995].

Figure 3.17 shows a causal network representing the reasoning involved when
a Mr. Holmes learns that his burglar alarm has sounded. He knows that earth-
quakes and burglars can both cause his alarm to sound. So there are arcs from
both earthquake and burglar to alarm. Only a burglar could cause footprints to
be seen. So there is an arc only from burglar to footprints. The causal network
model maintains that Mr. Holmes reasons as follows. If he were in his office at
work and learned that his alarm had sounded at home, he would assemble the
cause-effect relationship between burglar and alarm. He would reason along the
arc from alarm to burglar to conclude that he had probably been burglarized. If
he later learned of an earthquake, he would assemble the earthquake-alarm re-
lationship. He would then reason that the earthquake explains away the alarm,
and therefore he had probably not been burglarized. Notice that according to
this model, he mentally traces the arc from earthquake to alarm, followed by
the one from alarm to burglar. If, when Mr. Holmes got home, he saw strange
footprints in the yard, he would assemble the burglar-footprints relationship
and reason along the arc between them. Notice that this tracing of arcs in the
causal network is how Algorithm 3.2 does inference in Bayesian networks. The
causal network model maintains that a human reasons with a large number of
nodes by mentally assembling small fragments of causal knowledge in sequence.
The result of reasoning with the link assembled in one time frame is used when
reasoning in a future time frame. For example, the determination that he has
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probably been burglarized (when he learns of the alarm) is later used by Mr.
Holmes when he sees and reasons with the footprints.

Tests on human subjects have been performed testing the accuracy of the
causal network model. We discuss that research next.

3.7.2 Studies Testing the Causal Network Model

First we discuss ‘discounting’ studies, which did not explicitly state they were
testing the causal network model, but were doing so implicitly. Then we discuss
tests which explicitly tested it.

Discounting Studies

Psychologists have long been interested in how an individual judges the pres-
ence of a cause when informed of the presence of one of its effect, and whether
and to what degree the individual becomes less confident in the cause when
informed that another cause of the effect was present. Kelly [1972] called this
inference discounting. Several researchers ([Jones, 1979], [Quattrone, 1982],
[Einhorn and Hogarth, 1983], [McClure, 1989]) have argued that studies indi-
cate that in certain situations people discount less than is warranted. On the
other hand, arguments that people discount more than is warranted also have a
long history (See [Mills, 1843], [Kanouse, 1972], and [Nisbett and Ross, 1980].).
In many of the discounting studies, individuals were asked to state their feel-
ings about the presence of a particular cause when informed another cause was
present. For example, a classic finding is that subjects who read an essay de-
fending Fidel Castro’s regime in Cuba ascribe a pro-Castro attitude to the essay
writer even when informed that the writer was instructed to take a pro-Castro
stance. Researchers interpreted these results as indicative of underdiscounting.
Morris and Larrick [1995] argue that the problem in these studies is that the
researchers assume that subjects believe a cause is sufficient for an effect when
actually the subjects do not believe this. That is, the researchers assumed the
subjects believed the probability is 1 that an effect is present conditional on
one of its causes being present. Morris and Larrick [1995] repeated the Castro
studies, but used subjective probability testing instead of assuming, for exam-
ple, that the subject believes an individual will always write a pro-Castro essay
whenever told to do so (They found that subjects only felt it was highly probable
this would happen.). When they replaced deterministic relationships by proba-
bilistic ones, they found that subjects discounted normatively. That is, using
as a benchmark the amount of discounting implied by applying Bayes’ rule, they
found that subjects discounted about correctly. Since the causal network model
implies subjects would reason normatively, their results support that model.

Plach’s Study

While research on discounting is consistent with the causal network model, the
inference problems considered in this research involved very simple networks
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(e.g., one effect and two causes). One of the strengths of causal networks is
the ability to model complex relationships among a large number of variables.
Therefore, research was needed to examine whether human causal reasoning
involving more complex problems can be effectively modeled using a causal net-
work. To this end, Plach [1997] examined human reasoning in larger networks
modeling traffic congestion. Participants were asked to judge the probability
of various traffic-related events (weather, accidents, etc.), and then asked to
update their estimate of the probability of traffic congestion as additional evi-
dence was made available. The results revealed a high correspondence between
subjective updating and normative values implied by the network. However,
there were several limitations to this study. All analyses were performed on
probability estimates, which had been averaged across subjects. To the extent
that individuals differ in their subjective beliefs, these averages may obscure
important individual differences. Second, participants were only asked to con-
sider two pieces of evidence at a time. Thus, it is unclear whether the result
would generalize to more complex problems with larger amounts of evidence.
Finally, participants were asked to make inferences from cause to effect, which
is distinct from the diagnostic task where inferences must be made from effects
to causes.

Morris and Neapolitan’s Study

Morris and Neapolitan [2000] utilized an approach similar to Plach’s to explore
causal reasoning in computer debugging. However, they examined individuals’
reasoning with more complex causal relationships and with more evidence. We
discuss their study in more detail.

Methodology First we give the methodology.

Participants The participants were 19 students in a graduate-level com-
puter science course. All participants had some experience with the type of
program used in the study. Most participants (88%) rated their programming
skill as either okay or good, while the remainder rated their skill level as expert.

Procedure The study was conducted in three phases. In the first phase,
two causal networks were presented to the participants and discussed at length
to familiarize participants with the content of the problem. The causal networks
had been developed based on interviewing an experienced computer programmer
and observing him while he was debugging code. Both networks described
potential causes of an error in a computer program, which was described as
follows:

One year ago, your employer asked you to create a program to
verify and insert new records into a database. You finished the pro-
gram and it compiled without errors. However, the project was put
on hold before you had a chance to fully test the program. Now, one
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Inappropriate Program
PID in datafile aters PID

Error in Error Log Inappropriate value
print statement assianed to PID

Inappropriate PID
in error loa

Figure 3.18: Causal network for a simple debugging problem.

year later, your boss wants you to implement the program. While
you remember the basic function of the program (described below),
you can’t recall much of the detail of your program. You need to
make sure the program works as intended before the company puts
it into operation.

The program is designed to take information from a data file (the
Input File) and add it to a database. The database is used to track
shipments received from vendors, and contains information relating
to each shipment (e.g., date of arrival, mode of transportation, etc.),
as well as a description of one or more packages within each shipment
(e.g., product type, count, invoice number, etc.). Each shipment is
given a unique Shipment Identification code (SID), and each package
is given a unique Package Identification code (PID).

The database has two relations (tables). The Shipment Table
contains information about the entire shipment, and the Package
Table contains information about individual packages. SID is the
primary key for the Shipment Table and a foreign key in the Package
Table. PID is the primary key for the Package Table.

If anything goes wrong with the insertion of new records (e.g.,
there are missing or invalid data), the program writes the key infor-
mation to a file called the Error Log. This is not a problem as long
as records are being rejected because they are invalid. However, you
need to verify that errors are written correctly to the Error Log.

Two debugging tasks were described. The first problem was to determine
why inappropriate PID values were found in the Error Log. The causal network
for this problem was fairly simple, containing only five nodes (See Figure 3.18.).
The second problem was to determine why certain records were not added to the
database. The causal network for this problem was considerably more complex,
containing 14 variables (See Figure 3.19.).

In the second phase, participants’ prior beliefs about the events in each
network were measured. For events with no causes, participants were asked
to indicate the prior probability, which was defined as the probability of the
event occurring when no other information is known. For events that were
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Programalters shipment

Shipment record record SID (e.g., truncation)

repeated in Input File.
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SID for shiprment Programtried to insert two Wrong shipment
chsoir:\ll;ildn%;tn:ie records withthesame SID |« record SID valuein
/ \ into the Shipment Table Input File
Error Message: Failed to add Error message: \ A
Primary key has field shipment record to Duplicate value Wrong SID in
with null key vaue. Shipment Table in unique key. Shipment Table
Wrong package SID from package Several package records
record SID value — record could not be in the Error Log have
inInput Fle matched to avaluein thesame SID
the Shinment Tahle

-

Failed to add Error message:
package record to Violation of
Package Table Integrity Rule2

Figure 3.19: Causal network for a complex debugging problem.

caused by other events in the network, participants were asked to indicate the
conditional probabilities. Participants indicated the probability of the effect,
given that each cause was known to have occurred in isolation, assuming that
no other causes had occurred. In addition, participants rated the probability of
the effect occurring when none of the causes were present. From this data, all
conditional probabilities were computed using the noisy OR-gate model.

All probabilities were obtained using the method described in [Plach, 1997].
Participants were asked to indicate the number of times, out of 100, that an event
would occur. So probabilities were measured on a scale from 0 to 100. Examples
of both prior and conditional probabilities were presented to participants and
discussed to ensure that everyone understood the rating task.

In the third phase of the study, participants were asked to update the proba-
bilities of events as they received evidence about the values of particular nodes.
Participants were first asked to ascertain the prior probabilities of the values of
every node in the network. They were then informed of the value of a particular
node, and they were asked to determine the conditional probabilities of the val-
ues of all other nodes given this evidence. Several pieces of additional evidence
were given in each block of trails. Four blocks of trials were conducted, two
involving the first network, and two involving the second network.

The following evidence was provided in each block:

1. Block 1 (refers to the network in Figure 3.18)

Evidence 1. You find an inappropriate PID in the error log.

Evidence 2. You find an error in the Error Log print statement.
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2. Block 2 (refers to the network in Figure 3.18)

Evidence 1. You find an inappropriate PID in the error log.

Evidence 2. You find that there are no inappropriate PIDs in the data
file.

3. Block 3 (refers to the network in Figure 3.19)

Evidence 1. You find there is a failure to add several package records to
the Package Table.

Evidence 2. You get the message ‘Frror Message: Violation of integrity
rule 2.

Evidence 3. You find that several package records in the Error Log have
the same SID.

Evidence 4. You get the message ‘Error Message: Duplicate value in
unique key.’

4. Block 4 (refers to the network in Figure 3.19)

Evidence 1. You find there is a failure to add a shipment record to the
Shipment Table.

Evidence 2. You get the message ‘Error Message: Primary key has field
with null key value.’

Statistical Analysis The first step in the analysis was to model partici-
pants’ subjective causal networks. A separate Bayesian network was developed
for each participant based on the subjective probabilities gathered in Phase 2.
Each of these networks was constructed using the Bayesian network inference
program, Hugin (See [Olesen et al, 1992].). Then nodes in the network were
instantiated using the same evidence as was provided to participants in Phase
3 of the study. The updated probabilities produced by Hugin were used as
normative values for the conditional probabilities.

The second step in the analysis was to examine the correspondence between
participants and the Bayesian networks, which was defined as the correlation be-
tween subjective and normative probabilities. In addition, the analysis included
an examination of the extent to which correspondence changed as a function of
1) the complexity of the network, 2) the amount of evidence provided, and 3)
the participant providing the judgements.

The correspondence between subjective and normative ratings was examined
using hierarchical linear model (HLM) analysis [Bryk, 1992]. The primary result
of interest was the determination of the correlation between normative and
subjective probabilities. These results are shown in Figure 3.20.
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Figure 3.20: The combined effect of network complexity and amount of evidence
on the correlation between subjective and normative probability.

Conclusions The results offer some limited support for the causal network
model. Some programmers were found to update their beliefs normatively;
however, others did not. In addition, the degree of correspondence declined as
the complexity of the inference increased.

Normative reasoning was more likely on simple problems, and less likely
when the causal network was large, or when the participants had to integrate
multiple pieces of evidence. With a larger network, there will tend to be more
links to traverse to form an inference. Similarly, when multiple pieces of evidence
are provided, the decision-maker must reason along multiple paths in order to
update the probabilities. In both cases, the number of computations would
increase, which may results in less accurate subjective judgments.

Research on human problem solving consistently shows that decision-makers
have limited memory and perform limited search of the problem space (See
[Simon, 1955].). In complex problems, rather than applying normative deci-
sion rules, it seems people may rely on heuristics (See [Kahneman et al, 1982].).
The use of heuristic information processing is more likely when the problem
becomes too complex to handle efficiently using normative methods. There-
fore, while normative models may provide a good description of human rea-
soning with simple problems (e.g. as in the discounting studies described in
[Morris and Larrick, 1995]), normative reasoning in complex problems may re-
quire computational resources beyond the capacity of humans. Consistent with
this view, research on discounting has shown that normative reasoning occurs
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only when the participants are able to focus on the judgment task, and that
participants insufficiently discount for alternate causes when forced to perform
multiple tasks simultaneously (See [Gilbert, 1988].).

Considerable variance in the degree of correspondence was also observed
across participants, suggesting that individual differences may play a role in the
use of Bayes” Rule. Normative reasoning may be more likely among individuals
with greater working memory, more experience with the problem domain, or
certain decision-making styles. For example, individuals who are high in need
for cognition, seem more likely than others to carefully consider multiple factors
before reaching a decision (See [Petty and Cacioppo, 1986].). Future research
should investigate such factors as how working memory might moderate the
relationship (correspondence) between normative and subjective probabilities.
That is, it should investigate whether the relationship increases with the amount
of working memory.

Experience in the problem domain is possibly a key determinant of normative
reasoning. As individuals develop expertise in a domain, it seems they learn to
process information more efficiently, freeing up the cognitive resources needed for
normative reasoning (See [Ackerman, 1987].). A limitation of the current study
was that participants had only limited familiarity with the problem domain.
While all participants had experience programming, and were at least somewhat
familiar with the type of programs involved, they were not familiar with the
details of the system in which the program operated. When working on a
program of his or her own creation, a programmer will probably have a much
deeper and more easily accessible knowledge base about the potential problems.
Therefore, complex reasoning about causes and effects may be more easy to
perform, and responses may more closely match normative predictions. An
improvement for future research would be to involve the participants in the
definition of the problem.

EXERCISES

Section 3.1

Exercise 3.1 Compute P(x1lwl) assuming the Bayesian network in Figure
3.2.

Exercise 3.2 Compute P(t1|wl) assuming the Bayesian network in Figure 3.3.

Section 3.2
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Exercise 3.3 Relative to the proof of Theorem 3.1, show

P(z|nz)P(nz)P(dr|2)P(2)
;P(x|z)P(x|nZ,dT) = ;P(aﬂz) ZP(z)PZ(nZ,dTT) .

Exercise 3.4 Given the initialized Bayesian network in Figure 3.7 (b), use
Algorithm 3.1 to instantiate H for h1 and then C for c2.

Exercise 3.5 Prove Theorem 3.2.

Exercise 3.6 Given the initialized Bayesian network in Figure 3.10 (b), in-
stantiate B for bl and then A for a2.

Exercise 3.7 Given the initialized Bayesian network in Figure 3.10 (b), in-
stantiate A for al and then B for b2.

Exercise 3.8 Consider Figure 3.1, which appears at the beginning of this chap-
ter. Use the method of conditioning to compute the conditional probabilities of
all other nodes in the network when I is instantiated for f1 and C is instanti-
ated for cl.

Section 3.3

Exercise 3.9 Assuming the Bayesian network in Figure 3.13, compute the fol-
lowing:

1. P(Z=1X1=1,X=2,X3=2,X, =2).

2. P(Z=1X,=2,X=1,X3=1,X4,=2).

3. P(Z=1X:=2,X,=1,X3=1,X,=1).

Exercise 3.10 Derive Formulas 3.4, 3.5, 3.6, and 3.7.

Section 3.5

Exercise 3.11 Show what was left as an exercise in FExample 3.16.

Exercise 3.12 Show what was left as an exercise in FExample 3.18.



Chapter 4

More Inference Algorithms

In this chapter, we further investigate algorithms for doing inference in Bayesian
networks. So far we have considered only discrete random variables. However,
as illustrated in Section 4.1, in many cases it is an idealization to assume a vari-
able can assume only discrete values. After illustrating the use of continuous
variables in Bayesian networks, that section develops an algorithm for doing
inference with continuous variables. Recall from Section 3.6 that the problem
of inference in Bayesian networks is N P-hard. So for some networks none of
our exact inference algorithms will be efficient. In light of this, researchers have
developed approximation algorithms for inference Bayesian networks. Section
4.2 shows an approximate inference algorithm. Besides being interested in the
conditional probabilities of every variable given a set of findings, we are often
interested in the most probable explanation for the findings. The process of de-
termining the most probable explanation for a set of findings is called abductive
inference and is discussed in Section 4.3.

4.1 Continuous Variable Inference

Suppose a medical application requires a variables that represents a patient’s
calcium level. If we felt that it takes only three ranges to model significant
differences in patients’ reactions to calcium level, we may assign the variable
three values as follows:

Value Serum Calcium Level (mg/100ml)
decreased less than 9

normal 9 to 10.5
increased above 10.5

If we later realized that three values does not adequately model the situation, we
may decide on five values, seven values, or even more. Clearly, the more values
assigned to a variable the slower the processing time. At some point it would be
more prudent to simply treat the variable as having a continuous range. Next we

181
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Figure 4.1: The standard normal density function.

develop an inference algorithm for the case where the variables are continuous.
Before giving the algorithm, we show a simple example illustrating how inference
can be done with continuous variables. Since our algorithm manipulates normal
(Gaussian) density functions, we first review the normal distribution and give a
theorem concerning it.

4.1.1 The Normal Distribution
Recall the definition of the normal distribution:

Definition 4.1 The normal density function with parameters ;. and o,
where —oo < pt < oo and o > 0, is

| e’
p(x):\/2_7me 202 — o0 << oo, (4.1)

and is denoted N(z;u,0?).
A random variables X that has this density function is said to have a normal
distribution.

If the random variable X has the normal density function, then
E(X)=p and V(X)=o"

The density function N(x;0,12) is called the standard normal density
function . Figure 4.1 shows this density function.

The following theorem states properties of the normal density function needed
to do Bayesian inference with variables that have normal distributions:



4.1. CONTINUOUS VARIABLE INFERENCE 183

ky (x) = N(x;40,5%)

k(1) = N(y:10x,30?)

Figure 4.2: A Bayesian network containing continous random variables.

Theorem 4.1 These equalities hold for the normal density function:

N(z;p,0%) = N(p; x,0°) (4.2)
N(azip,0%) = 2N (&2 - (4.3)
7”’0' - a 7(15 a2 .

2 2 2 2

o5l + 01Uy 0705
N(x; g, 02N (x5 pig, 03) = kN [ a; -2 ; 4.4
( 251 CTl) ( Ha 02) ( J% CT% J% CT% ( )

where k does not depend on x.

/ N(@: 1,02 N (@39, 03)dz = N(y: 0% + 03). (4.5)

x
Proof. The proof is left as an exercise.

4.1.2 An Example Concerning Continuous Variables

Next we present an example of Bayesian inference with continuous random
variables.

Example 4.1 Suppose you are considering taking a job that pays $10 an hour
and you expect to work 40 hours per week. However, you are not guaranteed 40
hours, and you estimate the number of hours actually worked in a week to be
normally distributed with mean 40 and standard deviation 5. You have not yet
fully investigated the benefits such as bonus pay and nontaxable deductions such
as contributions to a retirement program, etc. However, you estimate these other
influences on your gross taxable weekly income to also be normally distributed
with mean 0 (That is, you feel they about offset.) and standard deviation 30.
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Furthermore, you assume that these other influences are independent of your
hours worked.

First let’s determine your expected gross taxable weekly income and its stan-
dard deviation. The number of hours worked X is mormally distributed with
density function py (x) = N(x;40,52), the other influences W on your pay are
normally distributed with density function py,(w) = N(w;0,30%), and X and
W are independent. Your gross taxable weekly income Y 1is given by

y=w + 10z.

Let py (ylx) denote the conditional density function of Y given X = x. The
results just obtained imply py (y|x) is normally distributed with expected value
and variance as follows:

EYl|x) = EW|z)+ 10z

E(W)+ 10z

0+ 10z = 10z
and

V{Y|z) = V(Wlz)

= V(W)

= 30%
The second equality in both cases is due to the fact that X and W are indepen-
dent. We have shown that py (y|x) = N(y; 10x,30%). The Bayesian network in
Figure 4.2 summarizes these results. Note that W is not shown in the network.
Rather W is represented implicitly in the probabilistic relationship between X
and Y. Were it not for W, Y would be a deterministic function of X. We

compute the density function py-(y) for your weekly income from the values in
that network as follows:

(y) = / py (Ul2)px (@) de

x

= L/}V(y;10x,302)DJ03;40,52)dx

x

= L/}V(10x;y,302)pfcz;4o,52)dx

x

1 2
_ N ( y 30 ) N(x; 40, 52)da

10 707 102

_ iN £.40 52+3_02

10 107 102
10 302

= —N (y;(10)(40),10* |5* + —
T (00 (010 |34 5|

= N(y;400,3400).
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The 3rd through 6th equalities above are due to Equalities 4.2, 4.3, 4.5, and 4.3
respectively. We conclude that the expected value of your gross taxable weekly
income is $400 and the standard deviation is /3400 = 58.

Example 4.2 Suppose next that your first check turns out to be for $300, and
this seems low to you. That is, you don’t recall exactly how many hours you
worked, but you feel that it should have been enough to make your income ex-
ceed $300. To investigate the matter, you can determine the distribution of
your weekly hours given that the income has this value, and decide whether this
distribution seems reasonable. Towards that end, we have

py (300|2)px (2)
py (300)
N(300; 10, 30%) N («; 40, 52)
py (300)
N(10z; 300, 30%) N (x; 40, 52)
py (300)
1 300 307

1_0N (x, 10’ 1—02> N(z;40,52)
py (300)
%ON (;30,3%) N(x;40,5%)
py (300)
k 523043240 3252
= 10py (300) (x 32452 132+ 52>
= N (2;32.65,6.62) .

px(xlY =300) =

The 3rd equality is due to FEquality 4.2, the 4th is due to FEquality 4.3, the 6th
is due to Equality 4.4, and the last is due to the fact that py(z|Y = 300) and
N (x;32.65,6.62) are both density functions, which means their integrals over x

must both equal 1, and therefore Wk(wo) = 1. So the expected value of the

number of hours you worked is 32.65 and the standard deviation is /6.62 = 2.57.

4.1.3 An Algorithm for Continuous Variables

We will show an algorithm for inference with continuous variables in singly-
connected Bayesian networks in which the value of each variable is a linear
function of the values of its parents. That is, if PAy is the set of parents of X,
then
r=wx + Z bxzz, (4.6)
ZePAx

where Wx has density function N(w;0, J%VX), and Wy is independent of each
7. The variable Wx represents the uncertainty in X’s value given values of
X’s parents. For each root X, we specify its density function N(z;puy,0%).
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A density function equal to N(z;uy,0) means we know the root’s value, while
a density function equal to N(z;0,00) means complete uncertainty as to the
root’s value. Note that ofy is the variance of X conditional on values of its
parents. So the conditional density function of X is

p(zlpax) = N(z, > bxzz,0,).
ZePAx

When an infinite variance is used in an expression, we take the limit of
the expression containing the infinite variance. For example, if 0 = oo and o2
appears in an expression, we take the limit as o2 approaches oo of the expression.
Examples of this appear after we give the algorithm. All infinite variances
represent the same limit. That is, if we specify N(z;0,00) and N(y;0,00), in
both cases oo represents a variable t in an expression for which we take the
limit as ¢ — oo of the expression. The assumption is that our uncertainty as
to the value of X is exactly the same as our uncertainty as to the value of
Y. Given this, if we wanted to represent a large but not infinite variance for
both variables, we would not use a variance of say 1,000,000 to represent our
uncertainty as to the value of X and a variance of In(1,000,000) to represent
our uncertainty as to the value of Y. Rather we would use 1,000,000 in both
cases. In the same way, our limits are assumed to be the same. Of course if it
better models the problem, the calculations could be done using different limits,
and we would sometimes get different results.

A Bayesian network of the type just described is called a Gaussian Bayesian
network. The linear relationship (Equality 4.6) used in Gaussian Bayesian net-
works has been used in causal models in economics [Joereskog, 1982], in struc-
tural equations in psychology [Bentler, 1980], and in path analysis in sociology
and genetics [Kenny, 1979], [Wright, 1921].

Before giving the algorithm, we show the formulas used in the it. To avoid
clutter, in the following formulas we use o to represent a variance rather than
a standard deviation.

The formula for X is as follows:

r=wyx + Z bxzz
ZEPAX
The X\ and 7 values for X are as follows:

5]

P
vechy CUX
A
A A Hux
Hx =0Xx E —J,\
UeCHyx UX

T 2 T
Ox =0wx + E bXx70% 7
ZePAx
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L s
Hx = E bxzix z-
ZEPAx

The variance and expectation for X are as follows:

okoy
0x = T A
oy + 0oy

T, A A, T
u _ o pux toxpx
X s A :

ox +0oy

The m messages Z sends to a child X is as follows:

1 1
Rz= |t DX
Z YeCHz—{X} Y7
A
Ky Ky z
=D DR
T, = Z YeCHz—{x} Y%
Xz =1 1
o T > oo
z YeCHz—{X} YZ

The A messages X sends to a parent Y are as follows:

1
oyx = 2o oy + owy + Z by 0% 7
YX ZePAy —{X}
1
Hi\/x I Hi\/ - Z by z1y 5
X ZePAy —{X}

When V is instantiated for v, we set

o

<>

oy =0y =0y =

=py =0

<>

ny =
Next we present the algorithm. You are asked to prove it is correct in

Exercise 4.2. The proof proceeds similar to that in Section 3.2.1, and can be
found in [Pearl, 1988].

Algomthm 4.1 Inference With Continuous Variables

Problem: Given a singly-connected Bayesian network containing continuous
variables, determine the expected value and variance of each node condi-
tional on specified values of nodes in some subset.
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Inputs: Singly-connected Bayesian network (G, P) containing continuous vari-
ables, where G = (V, E), and a set of values a of a subset A C V.

Outputs: The Bayesian network (G, P) updated according to the values in a.
All expectations and variances, including those in messages, are considered
part of the network.

void initial _net (Bayesian-network& (G, P) where G = (V, E),
set-of-variables& A,
set-of-variable-values& a)

{

A=g;a=0;
for (each X € V) {
oy = ooy = 0; // Compute \ values.

for (each parent Z of X) // Do nothing if X is a root.
0%y = 00 Wz = 0; // Compute A messages.

for (each child Y of X)

oy = 00; ¥ = 0; // Initialize 7 messages.
for (each root R) { // Compute variance and
ORja = OR; HRja = IR) // expectation for R.
0% = ORi Uy = lRi // Compute R’s 7 values.

for (each child X of R)
send-m-msg(R, X);

void update tree (Bayesian-network& (G, P) where G = (V, E),
set-of-variables& A,
set-of-variable-values& a,
variable V', variable-value ©)
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A=AU{V} a=au{o}; // Add V to A.

o =0; 0% =0; oyja =0; // Instantiate V for 0.
T ANe A A — 5.

Hy = U5 by = 13 Hyja = v3

for (each parent Z of V such that Z ¢ A)
send-A-msg(V, Z);

for (each child X of V)
send-m-msg(V, X);

void send_A msg(node Y, node X)

{

A __1 A 2 T .
IYX TR [JY Towy + 2 zepay—{x} byzgyz] ;

1y x = ﬁ [Hi\/ - ZZGPAy—{X} bYZ.ug’Z] )

—1
A 1 .
7 = [Sveen 7]

A B3

A DX .
/LX*JXZUGCHX oy’

o o)

— x9x .
JXa - ™ A
‘ 0X+0X

_ okuxtoxuk .
,uX\a - 0§+0§( 3
for (each parent Z of X such that Z ¢ A)
send A _msg(X, Z);
for (each child W of X such that W #Y)
send_m_msg(X,W);

// For simplicity (G, P)
// is not shown as input.
// Y sends X a A message.

// Compute X’s A values.

// Compute variance
// and
// expectation for X.
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void send 7w _message(node Z, node X)

{

1 1
oz = [@ + 2 vecH,—(x} 735
bz 4 Mz
. z YeCH,—{X} Y7
Hxz = 1 + Z +7
7z YeCHz—{x} Y7
if (X ¢A){

T 2 T .
0% =0wx + D gepay Ux2z0% 7

L — v .
Hx = ZZEPAX bxz I 7

A

s
_ oXxox
0Xla 0§+03\(7
oA A
_ Oxuxtoxpx .
,uX\a - 3

T oA
oxtox

for (each child Y of X)
send_m_msg(X,Y);
}

if not (ox = o)
for (each parent W of X
such that W # Z and W ¢ A)
send_A_msg(X, W);

CHAPTER 4. MORE INFERENCE ALGORITHMS

// For simplicity (G, P)
// is not shown as input.

; // Z sends X a 7 message.

// Compute X’s 7 values.

// Compute variance
// and
// expectation for X.

// Do not send \ messages
// to X’s other parents if X
// and all of X’s descendents
// are uninstantiated.

As mentioned previously, the calculations with oo in Algorithm 4.1 are done
by taking limits, and every specified infinity represents the same variable ap-
proaching co. For example, if 0% = oo, up = 8000, 03 = oo, and u§ = 0,

then
oppp +opHE oy £X 8000+ %0
o% + o t—o0 t+t
- 1x8000+1x0
T 5o 1+1
—  1im 2220 000,
t—o0 2

As mentioned previously,we could let different infinite variances represent dif-
ferent limits, and thereby possibly get different results. For example, we could
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replace o7, by t and o9 by In(t). If we did this, we would obtain

oL P + o iy £ 8000 + In(t) x 0
o+ 0p t—o0 t+In(t)
oy, 1X 8000+ B w0

= 8000.

Henceforth, our specified infinite variances always represent the same limit.

Since A and 7 messages and values are used in other computations, we assign
variables values that are multiplies of infinity when it is indicated. For example,
if

obp = 0+ 300% + oo + o0,

we would make 200 the value of 0, so that 2t would be used in an expression
containing o7, p.

Next we show examples of applying Algorithm 4.1.

Example 4.3 We will redo the determinations in Example 4.1 using Algorithm
4.1 rather than directly as done in that example. Figure 4.3 (a) shows the same
network as Figure 4.2; however, it explicitly shows the parameters specified for a
Gaussian Bayesian network. The values of the parameters in Figure 4.2, which
are the ones in the general specification of a Bayesian network, can be obtained
from the parameters in Figure 4.3 (a). Indeed, we did that in Ezample 4.1. In
general, we show Gaussian Bayesian networks as in Figure 4.3 (a).

First we show the steps when the network is initialized.

The call

wnitial _tree((G, P), A, a);

results in the following steps:
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oy = ooy = 0; // Compute \ values.

oyy =0 uyx =0;  // Compute X messages.
0%y =005 15 =0;  // Compute m messages.
Oxja = 5% pxja = 40;  // Compute pix|a and ox|a.
o = 5% uf = 40; // Compute X ’s  values.

send_m_msg(X,Y);

Example 4.4 The call
send_m_msg(X,Y);

results in the following steps:

—1
T S D _ T __ E2.
ol x = [gﬂ =o0% =5% // X sendsY a7 message.
Bx
T _ 9% _ T
Hyx = 71 = px = 40;
%
o 2 T )
oy =ow, +b5 0%y // Compute Y’s m value.

=302 + 102 x 52 = 3400 = 58.312;

Ky = by xpyx =10 x 40 = 400;

EN
_ 0%0Y iy 3400x¢ _ . ;
OYla = grtey tIE?o 3100 — 3400; // Compute variance
// and expectation forY .
T oA AT
— vy HOVRY |y 3400x0+¢x400 _ .
= = lim =400
Hyla o7 4o oo 3400+t )

The initialized network is shown in Figure 4.3 (b). Note that we obtained the
same result as in Example 4.1.
Next we instantiate Y for 300 in the network in Figure 4.3 (b).
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F =52 Fya= 5 F8, =52 PR.=4
1,=40 Ty = 40 8,=40 :8,.=0
b, =10 9 Fox = 5° 8 Foyx = 4
8, =40 8,=0

F =302 Fya=58312 F8 =58312 F% =4
wY Iy = 400 8, =400 8,=0

193

€Y (b)

Fa=2872 Fh=8 FxZZ
= 3265 :8,=40  :8,=30

9FBYX - 52 8F8YX - 32
B, =40 :8,,=30
FY|a =0 FBY =0 ng =0
e =300 :B,=300 :8 =300

(©

Figure 4.3: A Bayesian network modeling the relationship between hours work

and taxable income is in (a), the initialized network is in (b), and the network
after Y is instantiated for 300 is in (c).



194 CHAPTER 4. MORE INFERENCE ALGORITHMS

The call
update_tree((G, P), A, a,Y,300);
results in the following steps:

A=oU{Y}={Y}
a=@U{300} = {300};

= ov}a =0;

~>

oy =0
1 = 1y = fiy|, = 300;
send_\_msg(Y, X);
The call
send_\_msg(Y, X);

results in the following steps:

oY x =g (0% Towy] = 155 [0+ 900] = 9;

Py
Ty x
A

A BYx 030 _ an.
o =95 =30
ng\/x 9 9

>

"

™

ZRON — 2559 — .62 = 2.57%;

IXla = on4oy 2549

PPN
oxpxtoxpk —

PXla = Tontoy 2519

25x304+9x40 __ 32.65:

// Instantiate Y for 300.

/)Y sends X a A
// message.

// Compute X'’s A\
// values.

// Compute variance
// and expectation

// for X.

The updated network is shown in Figure 4.3 (c¢). Note that we obtained the same

result as in Fxample 4.2.

Example 4.5 This example is based on an example in [Pearl, 1988]. Suppose

we have the following random variables:

Variable | What the Variable Represents
P Wholesale price
D Dealer’s asking price
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Fo=4 Fa =4  FP,=4 F,=4
=0 pa=0 :8,=0 8.=0
bpp =1 9FBDP 4 8F op =4
B =0 8 .=0
bP DP
F.. = 3002 Fou =4  F,=4 =4
Wo 0 5 -0 -8 =
Dla D~ - D
@ (b)
Fra=3002  F8, =4 _F:pf 300°
fpa =8000 B =0  :%=8000
Foe =4 F8,p = 3002
9 5.=0 8 28 = 8000
FD|a: 0 FE,=0 F8,=0

o = 8000 :B, =8000 :8, =8000

©

Figure 4.4: The Bayesian network in (a) models the relationship between a car
dealer’s asking price for a given vehicle and the wholesale price of the vehi-
cle. The network in (b) is after initialization, and the one in (c) is after D is
instantiated for $8, 000.

We are modeling the relationship between a car dealer’s asking price for a given
vehicle and the wholesale price of the vehicle. We assume

d=wp +p op = 3002

where Wp is distributed N(wp;0,0w,). The idea is that in past years, the
dealer has based its asking price on the mean profit from the last year, but there
has been variation, and this variation is represented by the variables Wp. The
Bayesian network representing this model appears in Figure 4.4 (a). Figure 4./
(b) shows the network after initialization. We show the result of learning that
the asking price is $8,000.

The call
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update_tree((G, P), A, a, D,8000);
results in the following steps:

A=2U{D}={D}
a =@ U {8000} = {8000};

0h =0} =0ppa=0;
S
send_\_msg(D, P);
The call
send_\_msg(D, P);

results in the following steps:

T = = [rb + owa] = 1 [0+ 3007] = 300%

1 = 7 [1))] = £ [8000] = 8000;

bpp

1
b =[] =300

TP

A = o) ibe — 30025000 — goqp;

=0 =
Hp PoX, 3002
T _A 2
_ 0pop i tx300% 2.
OPla = gy = lim i5g = 3007

T N, A w . 5
Ophp+opip — lim tx8000+300°x0 __ 8000,

PPla = " orioy 43002

// Instantiate D for 8000.

// D sends P a A
// message.

// Compute P’s
// values.

// Compute variance

// and expectation
// for P.

The updated network is shown in Figure 4.4 (c¢). Note that the expected
value of P is the value of D, and the variance of P is the variance owing to the

variability W.

Example 4.6 Suppose we have the following random variables:

Variable | What the Variable Represents

P Wholesale price

D Dealer’s asking price

M Mean profit per car realized by Dealer in past year
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Fuuo = 300

(@)

FMIa=4/2 B, =4 B, =4 Foo =42 F,=4 F8, =4

Pla

Ivja= 4000 =0 :8, = 8000 Ipja=4000 8= :8,=18000

Fpa=0 FB, =0 Fé, =0
Y 8000 :BD = 8000 :sD = 8000
(b)
FM|a= 0 FBM =0 FBM =0 FPla = 3002 FBP -4 ng = 3002
H 1000 :8 =1000 :®,= 1000 pla= 7000  :B, = 18 = 7000

9 BFBDM =0 9 FZDP =4

“®ow = 1000 Pp=0

g 7t g o
8., = 8000 8, = 7000

Fou=0 Fe, =0 Fé, =0
1,=8000  :5,=8000 :%,=8000

(©

Figure 4.5: The Bayesian network in (a) models the relationship between a car
dealer’s asking price for a given vehicle, the wholesale price of the vehicle, and
the dealer’s mean profit in the past year. The network in (b) is after initialization

and after D is instantiated for $8,000, and the network in (c¢) is after M is also
instantiated for $1000.
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We are now modeling the situation where the car dealer’s asking price for a
given vehicle is based both on the wholesale price of the vehicle and the mean
profit per car realized by the dealer in the past year. We assume

d=wp+p+m op = 3007

where Wp is distributed N(wp;0,0w,). The Bayesian network representing
this model appears in Figure 4.5 (a). We do not show the initialized network
since its appearance should now be apparent. We show the result of learning that
the asking price is $8,000.

The call
update_tree((G, P), A, a, D,8000);
results in the following steps:

A=goU{D}={D}
a =@ U {8000} = {8000};

oh =0} =0ppa=0; // Instantiate D for 8000.
1h = up = fpja = 8000;

send_\_msg(D, P);
send_\_msg(D,M);

The call
send_A_msg(D, P);

results in the following steps:
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agpzé [0} +owp + 500D um] // D sends P a

= lim 1[04 300% 4+ 1 x t] = o0; // X\ message.

t—o0

HEP = ﬁ [Hiﬁ - bDMHEM]

= 18000 — 1 x 0] = 8000;

1 _
oy = [ 1 } = lim H ' = oo // Compute P’s
// X values.
A
up = J}%{lﬁ = lim [t@] = 8000;
DP

T A
— 9p%Pp __ txXt 13 t _ o0.
OPla = Griox — Jm 3y = lim 5= 5 // Compute variance
// and expectation
T A AT
__ OpUp+opup
Hpja = // for P.

TIPS
optop

J— 3 J— J— .
— lim t><80§)—8t:tt><0 _ 80200 _ 4000’

t—o0

Clearly, the call send_ X\ _msg(D, M) results in the same values for M as
we just calculated for P.

The updated network is shown in Figure 4.5 (b). Note that the expected
values of P and M are both 4000, which is half the value of D. Note further
that each variable still has infinite variance owing to uncertainty as to the value
of the other variable.

Notice in the previous example that D has two parents, and each of their
expected values is half of the value of D. What would happen if D had a third
parent F', bpr = 1, and F' also had an infinite prior variance? In this case,

1
A A
9br = 2 [UD +owp + bbb + b2DFJEF]
DP

1
= Jim 2 [04300° + 1 xt+1x1] =200
This means a;\, also equals 200, and therefore,

T, A A,
Oplp + 0pip

Bpla = o 4o
_ 1mt><8000+2t><0:8000:2667.
t—o0 t+ 2t 3

It is not hard to see that if there are k parents of D, all bpx’s are 1 and all
prior variances are infinite, and we instantiate D for d, then the expected value
of each parent is d/k.



200 CHAPTER 4. MORE INFERENCE ALGORITHMS

Example 4.7 Next we instantiate M for 1000 in the network in Figure 4.5 (b).
The call

update_tree((G, P), A, a, M,1000);
results in the following steps:

A= {D}U{M} = {D,M};
a = {8000} U {1000} = {8000, 1000};

o =03 =0 =0; ?? {gg%antiate M for
[ = Mg = Hagja = 1000;
send_m_msg(M,D);

The call

send_m_msg(M,D);

results in the following steps:

oy = [é} =0%,=0; // M sends D am message.

send_\_msg(D, P);

The call

send_A_msg(D, P);

results in the following steps:
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ohp =g (0D +ows +bhpohy] = 1 [0+ 3007 4 0] = 300%;

ihp = 5 (1 — boarmuhy] = 1 [8000 — 1000] = 7000;

—1
A1 1 T 1 171 _ 2.
op = [JEPJFJ%EP} *tlggo[3002+t] = 3007

Ao ez tEp | — 9002 T [Z000 | 100007 _ .
iy = o |12 + ke ] — 3002 lim (3089 + 10900] — 7000,

_ OPOp iy EXx300% 2.
OPla = Grioy — im0 = 3007

™A A, T 2
_ OBuPHOPEE _ 1i £XT00043002x0 _ .
HPla= ~origy = lim 43002 = 7000;

t—o0

The final network is shown in Figure 4.5 (c¢). Note that the expected value
of P is the difference between the value of D and the value of M. Note further
that the variance of P is now simply the variance of Wp.

Example 4.8 Suppose we have the following random variables:

Variable | What the Variable Represents
P Wholesale price
D Dealer-1’s asking price
FE Dealer-2’s asking price

We are now modeling the situation where there are two dealers, and for each
the asking price is based only on the wholesale price and not on the mean profit
realized in the past year. We assume

d=wp+p op = 3002

e=wg+p op = 10002,

where Wp is distributed N(wp;0,0w,) and Wg is distributed N(wg;0, 0wy, ).
The Bayesian network representing this model appears in Figure 4.6 (a). Figure
4.6 (b) shows the network after we learn the asking prices of Dealer-1 and Dealer-
2 in the past year are $8,000 and $10,000 respectively. We do not show the
calculations of the message values in that network because these calculations are
just like those in Example 4.5. We only show the computations done when P
receives both its A messages. They are as follows:



202 CHAPTER 4. MORE INFERENCE ALGORITHMS

Fwe =10002

WE

Fup = 3002

€Y

Fo = 2872 Fe,=4 F8, =2872
pa=8145 B =0 :5,=8145
P

Foop =4 9FBEP =4
B = B =0
EP
Fiop = 3002 Foep = 10002
-8 = 8000 8:%.. = 10000

Fea=0 F8.=0 Fe.=0

Foa=0 Fe, =0 F8, =0 |
:,=10000 :3.=10000  :°=10000

D
:,.=8000 5 =8000 9 =8000

“Dla

(b)

Figure 4.6: The Bayesian network in (a) models the relationship between two
car dealers’ asking price for a given vehicle and the wholesale price of the vehicle.
The network in (b) is after initialization and D and F are instantiated for $8, 000

and $10, 000 respectively.
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Notice the expected value of the wholesale price is closer to the asking price

of the dealer with less variability.
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Figure 4.7: The Bayesian network in (a) models the relationship between two car
dealers’ asking price for a given vehicle, the wholesale price of the vehicle, and
the mean profit per car realized by each dealer in the past year. The network in
(b) is after initialization and D and FE are instantiated for $8,000 and $10,000
respectively, and the one in (c¢) is after M and N are also instantiated for $1, 000.
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Example 4.9 Suppose we have the following random variables:

Variable | What the Variable Represents
P Wholesale price
M Mean profit per car realized by Dealer-1 in past year
D Dealer-1’s asking price
N Mean profit per car realized by Dealer-2 in past year
FE Dealer-2’s asking price

We are now modeling the situation where we have two dealer’s, and for each
the asking price is based both on the wholesale price and the mean profit per car
realized by the dealer in the past year. We assume

d=wp+p+m op = 300°

e=wg+p+n op = 10002,

where Wp is distributed N(wp;0,0w,) and Wg is distributed N(wg;0,0w,,).
The Bayesian network representing this model appears in Figure 4.7 (a). Figure
4.7 (b) shows the network after initialization and after we learn the asking prices
of Dealer-1 and Dealer-2 in the past year are $8,000 and $10,000 respectively.
For that network, we only show the computations when P receives its A messages
because all other computations are exactly like those in Example 4.6. They are
as follows:
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Note in the previous example that the expected value of the wholesale price
is greater than half of the asking price of either dealer. What would happen of
D had a third parent F', bpr = 1, and F also had an infinite prior variance? In
this case,
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= 5600.

Notice that the expected value of the wholesale price has decreased. It is not
hard to see that, as the number of such parents of D approaches infinity, the
expected value of the wholesale price approaches half the value of E.

Example 4.10 Next we instantiate both M and N for 1000 in the network in
Figure 4.7 (b). The resultant network appears in Figure 4.7 (c). It is left as an
exercise to obtain that network.

4.2 Approximate Inference

As mentioned at the beginning of this chapter, since the problem of inference
in Bayesian networks is N P-hard researchers have developed approximation
algorithms for inference in Bayesian networks. One way to do approximate
inference is by sampling data items, using a pseudorandom number generator,
according to the probability distribution in the network, and then approximate
the conditional probabilities of interest using this sample. This method is called
stochastic simulation. We discuss this method here. Another method is to
use deterministic search, which generates the sample systematically. You are
referred to [Castillo et al, 1997] for a discussion of that method.

First we review sampling. After that we show a basic sampling algorithm
for Bayesian networks called logic sampling. Finally, we improve the basic
algorithm.

4.2.1 A Brief Review of Sampling

We can learn something about probabilities from data when the probabilities
are relative frequencies, which were discussed briefly in Section 1.1.1. The fol-
lowing two examples illustrate the difference between relative frequencies and
probabilities that are not relative frequencies.

Example 4.11 Suppose the Chicago Bulls are about to play in the 7th game of
the NBA finals, and I assess the probability that they will win to be .6. I also
feel there is a .9 probability there will be a big crowd celebrating at my favorite
restaurant that night if they do win. However, even if they lose, I feel there
might be a big crowd because a lot of people may show up to lick their wounds.
So I assign a probability of .3 to a big crowd if they lose. I can represent
this probability distribution with the two-node Bayesian network in Figure 4.8.
Suppose I work all day, drive straight to my restaurant without finding out the
result of the game, and see a big crowd overflowing into the parking lot. I can
then use Bayes’ Theorem to compute my conditional probability they did indeed
win. It is left as an exercise to do so.
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P(Bulls = win) = .6

P(Crowd = big|Bulls = win) = .9
P(Crowd = big|Bulls = lose) = .3

Figure 4.8: A Bayesian network in which the probabilities cannot be learned
from data.

Example 4.12 Recall Example 1.23 in which we discussed the following situa-
tion: Joe had a routine diagnostic chest X-ray required of all new employees at
Colonial Bank, and the X-ray came back positive for lung cancer. The test had
a true positive rate of .6 and a false positive rate of .02. That is,

P(Test = positive| LungCancer = present) = .6

P(Test = positive| LungCancer = absent) = .02.

Furthermore, the only information about Joe, before he took the test, was that
he was one of a class of employees who took the test routinely required of new
employees. So, when he learned only 1 out of every 1000 new employees has lung
cancer, he assigned about .001 to P(LungCancer = present). He then employed
Bayes’ theorem to compute P(LungCancer = present|Test = positive). Recall
i Example 1.30 we represented this probability distribution with the two-node
Bayesian network in Figure 1.8. It is shown again in Figure 4.9.

There are fundamental differences in the probabilities in the previous two
examples. In Example 4.12, we have experiments we can repeat, which have
distinct outcomes, and our knowledge about the conditions of each experiment
is the same every time it is executed. Richard von Mises was the first to formalize
this notion of repeated identical experiments. He said [von Mises, 1928]

The term is ‘the collective’, and it denotes a sequence of uniform
events or processes which differ by certain observable attributes, say
colours, numbers, or anything else. [p. 12]

I, not von Mises, put the word ‘collective’ in bold face above. The classical
example of a collective is an infinite sequence of tosses of the same coin. Each
time we toss the coin, our knowledge about the conditions of the toss is the
same (assuming we do not sometimes ‘cheat’ by, for example, holding it close
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P(LungCancer = present) = .001

P(Test = positive|LungCancer = present) = .6

P(Test = positive|LungCancer = absent) =.02

Figure 4.9: A Bayesian network in which the probabilities can be learned from
data.

to the ground and trying to flip it just once). Of course, something is different
in the tosses (e.g. the distance from the ground, the torque we put on the
coin, etc.) because otherwise the coin would always land heads or always land
tails. But we are not aware of these differences. Our knowledge concerning the
conditions of the experiment is always the same. Von Mises argued that, in
such repeated experiments, the relative frequency of each outcome approaches
a limit and he called that limit the probability of the outcome. As mentioned
in Section 1.1.1, in 1946 J.E. Kerrich conducted many experiments indicating
the relative frequency does indeed appear to approach a limit.

Note that the collective (infinite sequence) only exists in theory. We never
will toss the coin indefinitely. Rather the theory assumes there is a propensity
for the coin to land heads, and, as the number of tosses approaches infinity, the
fraction of heads approaches that propensity. For example, if m is the number
of times we toss the coin, S,, is the number of heads, and p is the true value of
P({heads}),

(4.7)

Note further that a collective is only defined relative to a random process,
which, in the von Mises theory, is defined to be a repeatable experiment for
which the infinite sequence of outcomes is assumed to be a random sequence.
Intuitively, a random sequence is one which shows no regularity or pattern.
For example, the finite binary sequence ‘1011101100” appears random, whereas
the sequence ‘1010101010’ does not because it has the pattern ‘10’ repeated five
times. There is evidence that experiments like coins tossing and dice throwing
are indeed random processes. Namely, in 1971 G.R. Iversen et al ran many
experiments with dice indicating the sequence of outcomes is random. It is
believed that unbiased sampling also yields a random sequence and is therefore
a random process. See [van Lambalgen, M., 1987] for a thorough discussion of
this matter, including a formal definition of random sequence. Neapolitan [1990]
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provides a more intuitive, less mathematical treatment. We close here with an
example of a nonrandom process. 1 prefer to exercise at my health club on
Tuesday, Thursday, and Saturday. However, if I miss a day, I usually make up
for it the following day. If we track the days I exercise, we will find a pattern
because the process is not random.

Under the assumption that the relative frequency approaches a limit and
that a random sequence is generated, in 1928 R. von Mises was able to derive
the rules of probability theory and the result that the trials are probabilistically
independent. In terms of relative frequencies, what does it mean for the trials
to be independent? The following example illustrates what it means. Suppose
we develop sequences of length 20 (or any other number) by repeatedly tossing
a coin 20 times. Then we separate the set of all these sequences into disjoint
subsets such that the sequences in each subset all have the same outcome on
the first 19 tosses. Independence means the relative frequency of heads on the
20th toss is the same in all the subsets (in the limit).

Let’s discuss the probabilities in Examples 4.11 and 4.12 relative to the con-
cept of a collective. In Example 4.12, we have three collectives. First, we have
the collective consisting of an infinite sequence of individuals who apply for a
job at Colonial Bank, where the observable attribute is whether lung cancer is
present. Next we have the collective consisting of an infinite sequence of indi-
viduals who both apply for a job at Colonial Bank and have lung cancer, where
the observable attribute is whether a chest X-ray is positive. Finally, we have
the collective consisting of an infinite sequence of individuals who both apply
for a job at Colonial Bank and do not have lung cancer, where the observable
attribute is again whether a chest X-ray is positive. According to the von Mises
theory, in each case there is propensity for a given outcome to occur and the
relative frequency of that outcome will approach that propensity. Sampling
techniques estimate this propensity from a finite set of observations. In accor-
dance with standard statistical practice, we use the term random sample(or
simply sample) to denote the set of observations. In a mathematically rigorous
treatment of sampling (as we do in Chapter 6), ‘sample’ is also used to denote
the set of random variables whose values are the finite set of observations. We
will use the term both ways, and it will be clear from the context which we
mean. To distinguish propensities from subjective probabilities, we often use
the term relative frequency rather than the term probability to refer to a
propensity.

In the case of Example 4.11 (the Bulls game), I certainly base my proba-
bilities on previous observations, namely how well the Bulls have played in the
past, how big crowds were at my restaurant after other big games, etc. But we
do not have collectives. We cannot repeat this particular Bulls’ game with our
knowledge about its outcome the same. So sampling techniques are not directly
relevant to learning probabilities like those in the DAG in Figure 4.8. If we did
obtain data on crowds in my restaurant on evenings of similar Bulls’ games, we
could possibly roughly apply the techniques but this might prove to be complex.

We sometimes call a collective a population. Before leaving this topic, we
note the difference between a collective and a finite population. There are
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currently a finite number of smokers in the world. The fraction of them with lung
cancer is the probability (in the sense of a ratio) of a current smoker having lung
cancer. The propensity (relative frequency) of a smoker having lung cancer may
not be exactly equal to this ratio. Rather the ratio is just an estimate of that
propensity. When doing statistical inference, we sometimes want to estimate the
ratio in a finite population from a sample of the population, and other times
we want to estimate a propensity from a finite sequence of observations. For
example, TV raters ordinarily want to estimate the actual fraction of people in
a nation watching a show from a sample of those people. On the other hand,
medical scientists want to estimate the propensity with which smokers have lung
cancer from a finite sequence of smokers. One can create a collective from a finite
population by returning a sampled item back to the population before sampling
the next item. This is called ‘sampling with replacement’. In practice it
is rarely done, but ordinarily the finite population is so large that statisticians
make the simplifying assumption it is done. That is, they do not replace the
item, but still assume the ratio is unchanged for the next item sampled. In this
text, we are always concerned with propensities rather than current ratios. So
this simplifying assumption does not concern us.

Estimating a relative frequency from a sample seems straightforward. That
is, we simply use S,,/m as our estimate, where m is the number of trials and
Sy is the number of successes. However, there is a problem in determining our
confidence in the estimate. That is, the von Mises theory only says the limit in
Expression 4.7 physically exists and is p. It is not a mathematical limit in that,
given an € > 0, it offers no means for finding an M (¢) such that

‘ Sm,
p—
m

<e€ for m > M(e).

Mathematical probability theory enables us to determine confidence in our
estimate of p. First, if we assume the trials are probabilistically independent,
we can prove that Sy,/m is the maximum likelihood (ML) value of p. That
is, if d is a set of results of m trials, and P(d : p) denotes the probability of d if
the probability of success were p, then S, /m is the value of p that maximizes
P(d : p). Furthermore, we can prove the weak and strong laws of large numbers.
The weak law says the following. Given €,6 > 0

SWL
ol

So mathematically we have a means of finding an M (e, 6).

The weak law is not applied directly to obtain confidence in our estimate.
Rather we obtain a confidence interval using the following result, which is ob-
tained in a standard statistics text such as [Brownlee, 1965]. Suppose we have
m independent trials, the probability of success on each trial is p, and we have
k successes. Let

2
1-96 f —.
<€)> or m > ==

0<pgB<1
a=(1-0)/2
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o, kEFq (2K, 2[m — k + 1])
m—k+1+kF,(2z,2[m — k +1])
k
(m—k+1)Fi_o2[m—k+1],2k) + &’
where F'is the I distribution. Then

0, =

(01,0) is a 8 % confidence interval for p.
This means 3 % of the time the interval generated will contain p.

Example 4.13 Recall Example 1.2 in which we discussed repeatedly tossing a
thumbtack. Suppose we toss it 30 times and it lands heads (i..e. on its head) 8
times. It is left as an exercise to derive the following 95% confidence interval
for p, the probability of heads:

(.123, 459)

Since 95% of the time we will obtain an interval that contains p, we are pretty
confident p is in this interval.

One should not conclude that mathematical probability theory somehow
proves S, /m will be close to p, and that therefore we have no need for the von
Mises theory. Without some assumption about S,, /m approaching p, the math-
ematical result would say nothing about what is happening in the world. For
example, without some such assumption, our explanation of confidence intervals
would become the following: Suppose we have a sample space determined by
m identically distributed independent discrete random variables, where p is the
probability each of them assumes its first value. Consider the random variable
whose possible values are the probability intervals obtained using the method for
calculating a 8 % confidence interval. Then 3 is the probability that the value of
this random variable is an interval containing p. This result says nothing about
what will happen when, for example, we toss a thumbtack m times. However, if
we assume that the probability of an event is the limit of the relative frequency
with which the event occurs in the world, this means that if we repeatedly did
the experiment of tossing the thumbtack m times, in the limit 95% of the time
we will generate an interval containing p, which is how we described confidence
intervals above.

Some probabilists find fault with the von Mises theory because it assumes
the relative frequency definitely approaches p. For example [Ash, 1970] [p. 2]
says

...an attempt at a frequency definition of probability will cause
trouble. If S,, is the number of occurrences of an event in n inde-
pendent performances of an experiment, we expect physically that
the relative frequency S, /n should converge to a limit; however, we
cannot assert that the limit exists in a mathematical sense. In the



4.2. APPROXIMATE INFERENCE 211

case of the tossing of an unbiased coin, we expect S, /n — 1/2, but a
conceivable outcome of the process is that the coin will keep coming
up heads forever. In other words, it is possible that S,,/n — 1, or
that S, /n — any number between 0 and 1, or that S, /n has no
limit at all.

As mentioned previously, in 1946 J.E. Kerrich conducted many experiments
using games of chance indicating that the relative frequency does appear to
approach a limit. However, if it is only most likely this would happen, any
such experiment may indicate that it does. So to resolve the objection posed by
Ash, in 1992 R.E. Neapolitan obtained von Mises’ results concerning the rules
of probability by assuming S,, /m — p only in the sense of the weak law of large
numbers.

In Chapter 6, we further discuss estimating relative frequencies by sampling.
In that chapter, we use an approach which incorporates one’s prior belief con-
cerning a relative frequency into the computation of the estimate obtained from
the sample. That approach is called Bayesian, whereas the approach presented
here is often called frequentist.

4.2.2 Logic Sampling

Suppose p is the fraction of black balls in an urn containing white and black
ball. We could sample with replacement from the urn, and, according to the
theory discussed in the previous section, use k/m as an estimate of p, where
of m balls sampled k are black. Alternatively, assuming we have a function
random that returns a pseudorandom number between 0 and 1 according to
the uniform distribution, we could write the following computer simulation of
sampling m balls:

k=0;
for (i=1;i <=m;i++)
if random() < p
k+ +;
p=k/m;

Our estimate of p is p. This is called a simulation because we are not sampling
from an actual distribution, but rather are using pseudorandom numbers to
imitate the process of sampling. Of course, the previous simulation has no
value because, if we knew p, we would have no need to estimate it. The purpose
of discussing this simulation is for illustration.

Suppose next that we have the Bayesian network in Figure 4.10, and we
wish to compute P(yl). Instead of computing it directly, we could do the
following simulation to estimate it. First we determine all probabilities in the
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P(x1) = .7
P(y1] x1)=.8
P(y1|x2) = .4

Figure 4.10: A Bayesian Network

joint distribution as follows:

P(x1,y1) P(yllzl)P(z1) = (.2)(.5) = .1
P(x1,y2) = P(y2lz1)P(z1) = (.8)(.5) = 4
P(x2,y1) = P(yl|x2)P(x2) = (.6)(.5) =.3
P(x2,y2) P(y2|x2)P(x2). = (4)(.5) = .2.

Next we use our pseudorandom number generator to obtain m values of (x,y)
according to this distribution. If we let k& be the number of tuples containing
y1, we then have the following estimate:

P(yl) = %

Example 4.14 Suppose we have the Bayesian network in Figure 4.10, m =7,
and we generate the data in the following table:

Case | X | Y

1 2 | yl
zl | yl
zl | y2
2 | yl
zl | y2
2 | yl
2 | y2

~N O U= W N

Since yl occurs in 4 cases, our estimate is

A k 4
Plyl)=_—=~-.



4.2. APPROXIMATE INFERENCE 213

In a large network, we could never compute all the values in the joint dis-
tribution. So instead of using the method just described, we could obtain each
case by first generating a value Z of X using P(z), and then generating a value
g of Y using P(y|%). For each tuple (Z,7), & will occur P(Z) fraction of the
time in the limit; of those occurrences, § will occur P(7|Z) fraction of the time
in the limit. So (&, §) will occur P(g|%)P(Z) = P(Z, ) fraction of the time in
the limit, which is what we want. The following is a high-level algorithm for
this method:

k=0;

for (i=1;i<=m;i++) {
generate a value T of X using P(z);
generate a value g of Y using P(y|Z);

if (7 ==yl)
k++;
i
P(yl) = k/m;

Example 4.15 Suppose we have the Bayesian network in Figure 4.10, and m =
3. The following shows one possible outcome of our simulation:

1. We generate a value of X using P(xl) = .5. Suppose we find x1 occurs.
We then generate a value for' Y using P(yl|xl) = .2. Suppose we find y2
occurs. We do not increment k.

2. We generate a value for X using P(xl) = .5. Suppose we find x2 occurs.
We then generate a value for Y using P(yl|x2) = .6. Suppose we find yl
occurs. We increment k to 1.

3. We generate a value for X using P(xl) =.5. Suppose we find x1 occurs.
We then generate a value for' Y using P(yl|xl) = .2. Suppose we find yl
occurs. We increment k to 2.

Our final estimate is

P(y1) = 2/3.
We can use the method just presented to also estimate P(x1|yl). However,
we must throw out any cases that have Y = y2. The following high level
algorithm does this:

k=0;
for (i=1;i<=m;i++) {
repeat

generate a value & of X using P(z1);
generate a value g of Y using P(yl|Z);
until (g == yl);
if (z == x1)
k+ +;
}

P(z1|yl) = k/m;
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Example 4.16 Suppose we have the Bayesian network in Figure 4.10, m =5,
and the preceding algorithm generates the data in the following table:

Case | X | Y
1 2 | yl
2 zl | yl
3 zl | y2
4 2 | yl
) zl | yl
6 2 | yl
7 2 | y2

Cases 3 and 7 are rejected because Y = y2. So k =2, and we have

A k2
P(z1|yl) = =
You may wonder why we regenerate a new value for X when we generate a
value of y2 for Y. That is, you may ask why can’t we just retain our old value,
and keep generating a value of Y until we get yl. If we did this, in the limit
we would simply get X generated according to its prior probability because the
X values we kept have nothing to do with the Y values we generate. Recall we
want to generate X values according to P(z1|yl). The following table shows
values our algorithm would generate if the first 10 generated cases corresponded
exactly to the distribution in Figure 4.10.

Case | X | YV
1 zl | yl
2 zl | y2
3 zl | y2
4 zl | y2
) zl | y2
6 2 | yl
7 2 | yl
8 2 | yl
9 2 | y2

10 | 22| y2

Our algorithm will reject Cases 2, 3, 4, 5, 9, and 10, and it will estimate P(x1|y1)
to be 1/4 (using a value of 4 for m), which you can check is the correct values.
However, if we simply kept all X values and each time kept generating Y values
until we got y1, our estimate would be 5/10 (using a value of 10 for m).

The method just outlined is easily extended to an algorithm for doing ap-
proximate inference in Bayesian networks. The algorithm first orders the nodes
according to an ancestral ordering, which you should recall is an ordering of
the nodes such that,if Z is a descendent of Y, then Z follows Y in the ordering.
The algorithm, called logic sampling, was developed in [Henrion, 1988].
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Algomthm 4.2 Approximate Inference Using Logic Sampling

Problem: Given a Bayesian network, determine the probabilities of the values
of each node conditional on specified values of the nodes in some subset.

Inputs: Bayesian network (G, P), where G = (V, E), and a set of values a of

a subset A C V.

Outputs: Estimates of the conditional probabilities of the values of each node

inV —A given A =a.

void logic_sampling (Bayesian-network& (G, P) where G = (V, E),

set-of-variables A,
set-of-variable-values a,
estimates& P(z;a))
{
order the n nodes in V in an ancestral ordering;
for (each X; e V—A)
for (k= 1;k <= # of values in X’s space; k + +)
set # of occurrences of x;, to 0;
for (i =11 <=m;i++) {
J=1
while (j <=n) {
generate a value ; for X; using
P(xj|pa;) where Ba; is the
set of values generated for X,’s parents;
if (X, € A && &, # the value of X; € a)

J=1
else
J++

%or (each X; € V—A)
for (k= 1;k <= # of values in X;’s space; k + +)
if (o) == &)
add 1 to # of occurrences of x;
%or (each X; € V—A)
for (k= 1;k <= # of values in X’s space; k + +)
p(xjk|a) _ # of occurrences of xjy |

m 4

/] xjk is

// the kth

// value in

// X;j’s space.
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Figure 4.11: The Bayeisan network discussed in Example 4.17.

Example 4.17 Suppose we have the Bayesian network in Figure 4.11. Note
that we are using 1 and 2 as the values of all variables. If we instantiate X3
to 1 and X4 to 2, then A = {X3, Xy} and a = {1,2}. An application of the
preceding algorithm with m = 4 may yield the following data:

Case Xl X2 X3 X4 X5
1 1 2 1 2 2
2 1 2 2
3 1 2 1 2 1
4 2 1 1 1
5 2 2 1 2 2
6 2 1 2
7 1 1 1 2 1

Note that Case 2 never obtained values for X4 or Xg because the value generated
for X3 was not its value in a. We had similar results for Cases 4 and 6. The
resultant estimates are as follows:

P(Xy=1|X5=1,X,=2) =

P(Xy=1|X5=1,X,=2) =

I I N V)
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leo] [34)

(@) (b)

Figure 4.12: We can estimate the probability of picking a black ball from the
urn in (a) by sampling from the urn in (b).

P(Xs=1|X5=1,X,=2) = 3

4.2.3 Likelihood Weighting

A problem with logic sampling is that we need to reject cases which do not have
the evidence variables A instantiated for a. We reject each case with probability
1— P(a). So if the probability of the evidence is low, we will reject many cases.
Next we present a method called likelihood weighting, which circumvents
this problem. Before showing how the method is used in Bayesian networks, we
present a simple example illustrating the method.

Consider the two urns in Figure 4.12. Let C'olor be a random variable whose
value is black if we pick a black ball and whose value is white if we pick a white
ball. Furthermore, let P(black) be the probability Color = black for the urn in
Figure 4.12 (a), and let P’(black) be the probability Color = black for the urn
in Figure 4.12 (b). We will show how to estimate P(black) by sampling with
replacement from the urn in Figure 4.12 (b). Suppose we create a sample of size
m by sampling from that urn, and k of the balls are black. Instead of adding 1
each time we sample a black ball, we add score(black), where

P(black)
score(black) = m.

By adding score(black) each time we sample a black ball and then dividing the
result by m, we obtain

k x score(black)
-
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In the limit, we have

) k ( P(black) )

k x score(black) P’ (black)

lim —m—m—————% =

m— o0 m m—0o0
B (black) lim E
~ \ P/(black) ) m—ocom
(black) ,
= P(b b
(P’(bl o) (black) = P(black),

which is what we want. Therefore, if we use [k x score(black)] /m as an estimate
of P(black), we will have convergence. However, for any finite sample, we would
not necessarily have

k x score(black) n (m — k) x score(white)
m m

=1.

So instead we simply determine k x score(black) and (m — k) X score(white),
and then normalize to obtain our estimate. The following example illustrates
this.

Example 4.18 Suppose we sample 100 balls with replacement from the urn in
Figure 4.12 (b) and 72 are black. We have

P(black) — 2/3
—_— =38/9
score(black) = P (black) ~ 3/ /
. P(white) 1/3
— e —4
score(white) Pr(white) ~ 1/4 /3.
k x score(black) = 72(8/9) = 64

112
(m — k) x score(white) = 28(4/3) = 5

So our estimate of P(black) is given me

- 64
P(black) = 6151123 .632.

The previous sampling strategy for estimating P(black) has no practical
value because we had to know P(black) to do the estimation. However, next we
show how the method can be applied to Bayesian networks in a case where we
do not know the probabilities of interest.

Let (G, P), where G = (V, E), be a Bayesian network, V = { X1, Xo,... X, },
ACV,W=V-—-A aand w be sets of values of the variables in A and W
respectively, and v =w U a. Then

P(w,a)

P(a)
= aP(v)
= aP(

aP(xy|pa,)P(rn_1|pa,_1) - - P(x2|pag) P(z1]pa;),

P(wla) =
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where z; and pa, are respectively the values of X; and its parents PA; in v,
and « is a normative constant. Now suppose we let P’(w) be the probability
distribution obtained by taking the product of only the conditional distributions
in the Bayesian network of the variables in W with the evidence variables A
clamped to a. That is,

P'w) =[] Pailpay).

X;eW
where again the values of all variables are their values in v. We now define
P(wla)
aP’(w)
aP(xy|pa,)P(zn-1]pa, ;) P(xz|pay) P(x1|pa,)
o Hxi ew P(z;|pa;)
=[] Pailpay).

X;EA

score(w) =

Notice that we have eliminated the normalizing constant « in the score. Since
we eventually normalize to obtain our probability estimates from the scores,
there is no reason to include the constant. Before giving an algorithm for this
method, we show an example.

Example 4.19 Suppose we have the Bayesian network in Figure 4.11. To es-
timate P(X; = zj|Xs = 1, X4 = 2) for j =1, 2, and 5 using the method
just described, we first clamp X3 to 1 and X4 to 2. Then we generate values
of the other wvariables according to the distributions in the network. For ex-
ample, the first case is generated as follows: We initially generate a value of
X1 according to P(X, = 1) = .5. Let’s say we get a value of 2 for X;. We
then generate a value of Xo according to P(Xy = 1|X; = 2) = .1. Let’s say
we get a value of 2 for Xs. Finally, we generate a value of X5 according to
P(X5 =1|X, =2,X3 = 1) = .3. Note that the value of Xo is 2 because this is
the value that was generated, while the value of X3 is 1 because X3 is clamped
to this value. Let’s say we get a value of 1 for X5. The score score’ of a case
is defined to be the score of the value of w for that case. For example, the score
of the first case (just discussed) is given by

score’(Case 1) = score(X; =2,Xo=2,X5=1)
— P(Xy=2Xo = 2)P(X3 = 1|X;, = 2)
— (9)(4) = .36.

The following table shows possible data for the first 4 cases and the corresponding
scores:

Case | X; | Xo | X3 | Xy | X5 | score
1 2 2 1 2 1 .36
2 1 1 1 2 2 .28
3 2 1 1 2 2 .16
4 1 1 1 2 1 .28
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Finally we estimate the conditional probability of the value of any particular
variable by normalizing the sum of the scores for the cases containing that value.
For example,

P(X;=1X35=1,X,=2) o [score'(Case 2)+ score'(Case 4)]
o 28+ .28] = .56

P(X;=2|X3=1,X,=2) o [score'(Case 1)+ score'(Case 3)]
o [.36 +.16] = .52.

So

N .56

It is left as an exercise to do the computations that estimate the conditional
probabilities of the other variables.

Next we give an algorithm for the likelihood weighing method.

Algorlthm 4.3 Approximate Inference Using Likelihood Weighting

Problem: Given a Bayesian network, determine the probabilities of the values
of each node conditional on specified values of the nodes in some subset.

Inputs: Bayesian network (G, P), where G = (V, E), and a set of values a of
a subset A C V.

Outputs: Estimates of the conditional probabilities of the values of each node
inV—Agiven A =a.

void like _weight (Bayesian-network& (G, P) where G = (V, E),
set-of-variables A,
set-of-variable-values a
estimates& P(z;]a))

7
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order the n nodes in V in an ancestral order;
for (each X; € V—A)
for (k = 1;k <= # of values in X;’s space; k + +) /] @i is

P(xjkla) =0; // the kth
for (each X; € A) // value in
set &; to the value of X in a; // X;’s space.

for i =1i<=m;i++) {
for (j=1;j<=n7+4){

if (X, ¢ A)
generate a value Z; for X using // Use all
P(x;;|pa;) where pa; is the // values of k.

set of values generated for X;’s parents;

score =TT, en P& 153,
for (each X; € V- A);
for (k= 1;k <= # of values in X,’s space; k + +)
if (zjx == ;)
P(zj]a) = P(x;1]a) + score;
for (each X; € V —A)

for (k= 1;k <= # of values in X;’s space; k + +)
normalize P(z;|a);

Algorithm 4.3 was developed independently in [Fung and Chang, 1990] and
[Shachter and Peot, 1990]. It is proven in [Dagum and Luby, 1993] that the
problem of approximate inference in Bayesian networks is N P-hard. However,
there are restricted classes of Bayesian networks which are provably amenable to
a polynomial-time solution (See [Dagum and Chavez, 1993].). Indeed, a variant
of the likelihood weighting algorithm, which is worst-case polynomial time as
long as the network does not contain extreme conditional probabilities, was
developed in [Pradham and Dagum, 1996].

4.3 Abductive Inference

First we describe abductive inference in Bayesian networks; then we present an
algorithm for it.

4.3.1 Abductive Inference in Bayesian Networks

Recall the Bayesian network discussed in Example 1.32. That network is shown
again in Figure 4.13. Recall further that the variables represent the following:
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P(hl) = .2

P(b1jhl) = .25
P(b1Jh2) = .05

P(I1/h1) = .003
P(I1]h2) = .00005

P(f1|b1,11) = .75 P(cl|l1) = .6
P(f1|b1,12) = .10 P(c1|l2) = .02
P(f1|b2,11) = .5

P(f1|b2,12) = .05

Figure 4.13: A Bayesian nework.

Variable | Value | When the Variable Takes this Value
H hl Patient has a smoking history

h2 Patient does not have a smoking history
B bl Patient has bronchitis

b2 Patient does not have bronchitis
L 11 Patient has lung cancer

12 Patient does not have lung cancer
F f1 Patient is fatigued

2 Patient is not fatigued
C cl Patient has a positive chest X-ray

c2 Patient has a negative chest X-ray

We discussed this network again in the beginning of chapter 3. We noted that if a
patient had a smoking history and a positive chest X-ray, we would be interested
in the probability of that patient having lung cancer (i.e. P(I1|h1,cl)) and
having bronchitis (i.e. P(bl]hl,cl)). We went on to develop algorithms that
perform this type of inference. Besides being interested in these conditional
probabilities, a physician would be interested in the most probable explanation
for the symptoms. That is, the physician would be interested in whether it
is most probable that the patient has both lung cancer and bronchitis, has
lung cancer and does not have bronchitis, does not have lung cancer and has
bronchitis, or does not have either lung cancer or bronchitis. In general, the
physician is interested in the most probable set of diseases given some symptoms.
Similarly, in the case of an electronic circuit, we would be interested in the most
probable explanation for a failure at some point in the circuit. Another example
is the determination for the most probable cause of failure of an automobile to
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function properly. This process of determining the most probable explanation
for a set of findings is called abductive inference. We have the following
definition specific to Bayesian networks:

Definition 4.2 Let (G, P) where G = (V,E) be a Bayesian network, let M C V,
DCV,and MND = @. M is called the manifestation set and D is called the
explanation set. Let m be a set of values of the variables in M. Then a set of
values of the variables in D that maximizes

P(d[m)

is called a most probable explanation (MPE) for m. The process of deter-
mining such a set is called abductive inference.

Example 4.20 Suppose we have the Bayesian network in Figure 4.13, M =
{H,C}, D={B,L} and m = {hl,cl}. Then a most probable explanation for
m contains values of B and H that mazimize

P(bi,1j|h1,cl).

The chain rule gives us a straightforward algorithm for determining a most
probable explanation. That is, if D = {D1, D, ...D}, M = {My, M, ...M;}, m =
{mi,ma,..m;}, and d = {di,ds,...d} is a set of values of the variables in D,
then

P(d|m) = P(dl,dg,dgy...dk|m1,m2,...mj)
= P(d1|d2,...dk,ml,mg,...mj)P(d2|d3,...dk,ml,mg,...mj)
"‘P(dk|m1,m2,...mj).

We can compute all the probabilities, in the expression on the right in the
equality above, using our algorithms for doing inference in Bayesian networks.
So to determine a most probable explanation, we simply use this method to
compute the conditional probabilities of all the explanations, and then we take
the maximum.

Example 4.21 To compute a most probable explanation for the instance in
Example /.20, we need compute the following 4 conditional probabilities:

P(b1,11|h1,cl) = P(b1|I1,h1,c1)P(I1]h1, c1)
P(b1,12|h1, cl) = P(b1|12, b1, c1)P(12|h1, c1)
P(b2,11|h1, cl) = P(b2|11, 1, c1)P(I1]h1, c1)
P(b2,12|h1,cl) = P(b2|12, b1, c1)P(12|h1, c1).

After doing this, we take the maximum to determine a most probable explana-
tion.
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The problem with the simple algorithm just described is that it has expo-
nential time complexity. For example, if each variable has only two values and
their are k variables in the explanation set, we must determine the conditional
probability of 2% explanations. [Cooper, 1990] has shown that the problem of
abductive inference in Bayesian networks is NV P-hard. One way to handle op-
timization problems such as abductive inference is to use best-first search with
branch-and-bound pruning. For many instances this technique avoids gener-
ating most of the possible explanations and is therefore efficient. This is the
method presented here. Zhaoyu and D’Ambrosio [1993] develop an algorithm
for finding the r most probable explanations in an arbitrary Bayesian network,
which does not use search.

4.3.2 A Best-First Search Algorithm for Abductive Infer-
ence

The best-first search with branch-and-bound pruning technique is used to solve
problems in which a set of items needs to be chosen so as to maximize or
minimize some function of the items. Neapolitan and Naimipour [1998] present
a general introduction to the technique. Here we only develop an algorithm for
abductive inference using the technique.

For the sake of focus, we will use medical terminology. We assume that the
explanation set consists of k possible diseases, each of which may or may not be
present in the patient. That is,

D ={Dy, D, ..., D;},

We know that the patient has a certain set of values m of certain symptoms M.
Our goal is to find the set of diseases that is most probably present. Note that
these assumptions entail that each variable in the explanation set has only two
values. Let A = D, D;,,...D;; be a subset of D. We will denote the event that
the diseases in A are present and all other diseases are absent by

A

and by

Di,, Diy,...D;,.

For example, suppose there are 4 diseases. Then
Dla D3

represents the event

D, = present, Dy = absent, D3 = present, D, = absent.

We call
P(Dl, D3|m)
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Figure 4.14: The state space tree for abductive inference when there are 3
possible diseases.

the conditional probability of the diseases. Note that this is not consistent
with the usual use of this terminology because ordinarily it means these diseases
are present and it is not known whether others are also. Here it entails that no
other diseases are present.

We can solve the problem of determining the most probable set of diseases
(conditional on the information that some symptoms are present) by construct-
ing a state space tree, such that each node in the tree contains a subset of
D, as follows: The root of the tree contains the empty set, the left child of the
root contains {D; }, and the right child of the root contains the empty set. The
left child of the root’s left child contains {D1, Dy}, and its right child contains
{D1}. In general, we go to the left of a node a level i to include disease D41
and we go to the right to not include it (Note that the root is at level 0.).
Each leaf in the state space tree represents a possible solution (that is, the set
of diseases that have been included up to the leaf). To solve the problem, we
compute the conditional probability of the set of diseases at each leaf, and then
we determine which conditional probability is largest. The tree for the case of
3 possible diseases is shown in Figure 4.14.

Our goal is to avoid generating most nodes in the tree. We can often ac-
complish this by determining a bounding function, which, at each node, puts
an upper bound on the conditional probabilities of the sets of diseases in all de-
scendents of the node. As we generate nodes starting from the root, we compute
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both the conditional probability of the disease set at the node and the bound for
the node. We use the bound for two purposes. First, we prune any node whose
bound is less than the greatest conditional probability found so far. Second,
we always next expand the node with the current best bound. In this way, we
can often arrive at an optimal solution faster than we would if we visited the
nodes in some predetermined order. This technique is called best-first search
with brand-and-bound pruning. Before we can illustrate the technique, we
need to find a bounding function. The following theorem accomplishes this for
a large class of instances.

Theorem 4.2 If A and A’ are two sets of diseases such that
P(A") < P(A),

then

N

P(A'm) < ——=.

P(A
P

m)

Proof. According to Bayes’ Theorem
P(m|A)P(A)

P(RIm) = —=p55
_ P(mA)P(A)
- P(m)
P(A)
= P(m)’

The first inequality is due to the assumption in the theorem, and the second is
due to the fact that any probability is less than or equal to 1. This proves the
theorem.

For a given node, let A be the set of diseases that have been included up to
the node, and for some descendent of that node, let A’ be the set of diseases that
have been included up to that descendent. Then A C A’. Often it is reasonable
to assume that

P(A)< P(A)  when ACA.

The reason is that usually it is at least as probable that a patient has a set
of diseases as it is that the patient has that set plus even more diseases (Recall
that these are prior probabilities before any symptoms are observed.). If we
make this assumption, Theorem 4.2 implies that

L))
P(m)’

Therefore, P(A)/P(m) is an upper bound on the conditional probability of the
set of diseases in any descendent of the node.

P(A'|m) <
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Next we show an example that uses this bound to prune branches. First
we need some additional terminology. When the bound for a given node is
no better than the value of the best solution found so far, the node is called
nonpromising. Otherwise, it is called promising.

Example 4.22 Suppose there are four diseases Dy, Do, D3, and D4 in our
explanation set D, and we have a set of values m of the variables in our symptom
set M. The input to this example would also include a Bayesian network that
contains the probabilistic relationships among the diseases and the symptoms.
The probabilities used in this example would be computed from this Bayesian
network using an algorithm for inference in a Bayesian network. Therefore, do
not think that there is somewhere in this text where they are computed. We are
assigning arbitrary probabilities to illustrate the best-first search algorithm.

Figure 4.15 is the pruned state space tree produced by a best-first search with
branch-and-bound pruning. Probabilities have been given arbitrary values in the
tree. The conditional probability is on the top and the bound is on the bottom
at each node. The shaded node is where the best solution is found. Nodes are
labeled according to their depth and position from the left in the tree. The steps
that produce the tree follow. The value of the variable Best is the current best
solution, while P(Best|m) is its conditional probability. Our goal is to determine
a value of Best that mazimizes this conditional probability. It is also assumed
arbitrarily that

p(m) = .01.

1. Visit node (0,0) (the root).

(a) Compute its conditional probability. {& is the empty set. This means
no diseases are present.}

P(@|lm) = 1.  {The computation would be done by another}
{algorithm. We are assigning arbitrary values. }
(b) Set
Best = o
P(Best|m) = .1.

(c) Compute its prior probability and bound.

P(2) = 9.
P(@) .9

2. Visit node (1,1).
(a) Compute its conditional probability.
P(Dy|m) = 4.
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(0.0)

p(lm)=.1

bound =90

1,1) 1,2)

P(D,Im) = 4 p(l|m)=.1

bound =.9 bound = 90

(2,1) (2,2) (2,3) (2,4)

P(D,Im) = 4 p(lm)=.1
bound =.9 bound = 90

(3,1) (3,2) (3,3) (3,4)

P(D,,D,Jm)=.05\ [ P(D,Jm)=.4 P(D,Jm) = .1
bound = .1 bound =.9 bound = .2

(4,2) (4,3) (4,4)

oA P(D,lm) = .4 P(D,m)=.6

bound =0 bound =0 bound =0

Figure 4.15: The pruned state space tree produced using best-first search with
brand-and-bound pruning in Example 4.22. At each node, the conditional prob-
ability of the diseases included up to that node is at the top, and the bound
on the conditional probability that could be obtained by expanding beyond the
node is at the bottom. The shaded node is the one at which a most probable
explanation is found.
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(b) Since 4 is greater than P(Best|m), set

Best = {D;}
P(Best|m) = .4.

(c) Compute its prior probability and bound.

P(Dy) = .009
_ P(Dy) .009
bound = P(m) =0 =.9.

3. Visit node (1,2).

(a) Its conditional probability is simply that of its parent, namely .1.

(b) Its prior probability and bound are simply those of its parent, namely
.9 and 90.

4. Determine promsising, unexpanded node with largest bound.
(a) That node is node (1,2). We wisit its children next.
5. Visit node (2,3).
(a) Compute its conditional probability.
P(Dy|m) = .15.

(b) Compute its prior probability and bound.

P(D5y) = .005.
P(Dy)  .005
b = =— =5
ound P(m) o1 5

6. Visit node (2,4).

(a) Its conditional probability is simply that of its parent, namely .1.

(b) Its prior probability and bound are simply those of its parent, namely
.9 and 90.

7. Determine promising, unexpanded node with largest bound.
(a) That node is node (2,4). We wisit its children next.
8. Visit node (3,3).
(a) Compute its conditional probability.
P(D3lm) = .1.
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(b) Compute its prior probability and bound.

P(D3) = .002.
_ P(Dy) _ 002 _
bound = Pm) ~ 01

(c) Determine it is non-promising because its bound .2 is less than .4,
the value of P(Best|m).

9. Visit node (3,4).

(a) Its conditional probability is simply that of its parent, namely .1.

(b) Its prior probability and bound are simply those of its parent, namely
.9 and 90.

10. Determine promising, unexpanded node with the largest bound.
(a) That node is node (3,4). We wvisit its children next.
11. Visit node (4,3).
(a) Compute its conditional probability.
P(Dy|m) = .6.
(b) Since .6 > P(Best|m), set

Best = {D4}
P(Bestjm) = .6.

(c) Set its bound to 0 because it is a leaf in the state space tree.

(d) At this point the node (2,3) becomes non-promising because its bound
.5 less than or equal to .6, the new value of P(Best|m).

12. Visit node (4,4).

(a) Its conditional probability is simply that of its parent, namely .1.

(b) Set its bound to 0 because it is a leaf in the state space tree.
13. Determine promsising, unexpanded node with largest bound.
(a) That node is node (1,1). We wvisit its children next.
14. Visit node (2,1).
(a) Compute its conditional probability.

P(Dl, D2|m) =.1.
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(b) Compute its prior probability and bound.
P(Dy, D) = .003

P(Dy,D;) 003

bound = =2 _ 3
oun P(m) o7

(¢) Determine it is non-promising because its bound .3 less than or equal
to .6, the value of P(Best|m).

15. Visit node (2,2).

(a) Its conditional probability is simply that of its parent, namely .4.

(b) Its prior probability and bound are simply those of its parent, namely
.009 and .9.

16. Determine promaising, unexpanded node with greatest bound.

(a) The only promising, unexpanded node is node (2,2). We wisit its
children net.

17. Visit node (3,1).
(a) Compute its conditional probability.
P(Dy, D3|m) = .05.
(b) Compute its prior probability and bound.
P(Dy, D3) = .001

P(Dy,D3) 001

bound = -
oun P(m) 01

(¢) Determine it is non-promising because its bound .1 less than or equal
to .6, the value of P(Best|m).

18. Visit node (3,2).

(a) Its conditional probability is simply that of its parent, namely .4.

(b) Its prior probability and its bound are simply those of its parent,
namely .009 and .9.

19. Determine promsising, unexpanded node with largest bound.

(a) The only promising, unexpanded node is node (3,2). We wisit its
children net.

20. Visit node (4,1).
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(a) Compute its conditional probability.
P(Dy, Dy|m) = .65.
(b) Since .65 is greater than P(Best|m), set

Best = {D1 D4}
P(Bestlm) = .66.

(c) Set its bound to 0 because it is a leaf in the state space tree.
21. Visit node (4,2).

(a) Its conditional probability is simply that of its parent, namely .4.

(b) Set its bound to 0 because it is a leaf in the state space tree.
22. Determine promising, unexpanded node with largest bound.
(a) There are no more promising, unexpanded nodes. We are done.

We have determined that the most probable set of diseases is {D1, D4} and
that P(Dl, D4|m) = .65.

A reasonable strategy in this problem would be to initially sort the diseases
in non-decreasing order according to their prior probabilities. There is no guar-
antee, however, that this strategy will minimize the search time. We did not
do this in the previous example and there were 15 nodes checked. In the exer-
cises, you will establish that if the diseases were sorted, there would be 23 nodes
checked.

We present the algorithm shortly. However, first we need discuss our imple-
mentation of best-first search. This implementation uses a priority queue. In a
priority queue, the element with the highest priority is always removed next.
In best-first search applications, the element with the highest priority is the
node with the best bound. A priority queue can be implemented as a linked
list, but more efficiently as a heap. We manipulate the priority queue PQ with
the following two procedures.

Insert(PQ, X)
is a procedure that adds X to the priority queue PQ, while

Remove(PQ, X)

is a procedure that removes the node with the best bound and assigns its value
to X. When removing a node from PQ, we have a check which determines if
the bound for the node is still better than Best. This is how we determine that
a node has become non-promising after visiting the node. For example, node
(2,3) in Figure 4.15 is promising at the time we visit it. In our implementation,
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this is when we insert it in PQ. However, it becomes non-promising when Best
takes the value .6. In our implementation, this is before we remove it from PQ.
We learn this by comparing its bound to Best after removing it from PQ. In
this way, we avoid visiting children of a node that becomes non-promising after
it is visited. Since we need the bound for a node at insertion time, at removal
time, and to order the nodes in the priority queue, we store the bound at the
node. The declaration is as follows:

struct node

{
int level; // the node’s level in the tree
set-of-indices A;
float bound,

};

The value of the field A is the set of indices of the diseases included up to
the node. The algorithm now follows. It has come to be known as Cooper’s
Algorithm because it was developed by Greg Cooper in [Cooper, 1984].

Algorlthm 4.4 Cooper's Best-First Search Algorithm for Abductive Inference

Problem: Determine a most probable set of diseases (explanation) given a set
of symptoms. It is assumed that if a set of diseases A is a subset of a set
of diseases A’, then

P(N) < P(A).

Inputs: Positive integer n, Bayesian network (G, P) where G = (V, E), ordered
subset D of V containing n disease variables, and set of values m of the
variables in a subset M of V.

Outputs: A set Best that contains the indices of the diseases in a most proba-
ble explanation, and a variable Pbest that is the probability of Best given
that M = m.

void Cooper (int n,
Bayesian-network& (G, P) where G = (V, E),
ordered-set-of-diseases D,
set-of-symptoms M,
set-of-symptom-values m,
set-of-indices& Best, float& Pbest)
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{
priority-queue-of-node PQ);
node X,Y;
X.level = 0; // Set X to the root.
XA =0 // Store empty set at root.
Best = &;

Pbest = P(Best|m);
X.bound = bound(X);
insert(PQ, X);

while (fempty(PQ)){

remove(PQ, X); // Remove node with best bound.
if (X.bound > Pbest){
Y.level = X.level + 1; // Set Y to a child of X.
Y.A=XA; // Set Y to the child that includes
put Y.ievel in Y.A; // the next disease.
if (P(Y.Alm) > Pbest){
Best = Y.A;

Pbest = P(Y.Alm);
}
Y.bound = bound(Y);
if (Y.bound > Pbest)

msert(PQ,Y);
Y.A=XA; // Set Y to the child that does
Y.bound = bound(Y); // not include the next disease.
if (Y.bound > Pbest)

msert(PQ,Y);

}
}
}
int bound (node Y)
if (Y.level ==n) // A leaf is non-promising,.
return 0;
else

} return (P(Y.A)/P(m);

The notation P(A) stands for the prior probability of A, P(m) stands for the
prior probability of m, and P(A|m) stands for the conditional probability of A
given m. These values would be computed from the Bayesian network (G, P)
using an algorithm for inference in a Bayesian network.

We have written the algorithm strictly according to guidelines for writing
best-first search algorithms. An improvement is possible. First, there is no need
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to call function bound for the right child of a node. The reason is that the right
child contains the same set of diseases as the node itself, which means its bound
is the same. Therefore, the right child will be pruned only if we change Pbest
to a value greater than or equal to this bound at the left child. We can modify
our algorithm to prune the right child when this happens, and to expand to the
right child when it does not happen

If there is more than one best solution, Algorithm 4.4 only produces one of
them. It is straightforward to modify the algorithm to produce all the best
solutions. It is also possible to modify it to produce the r most probable
solutions, where r is any positive integer. This modification is discussed in
[Neapolitan, 1990]. Furthermore, Neapolitan [1990] analyzes the algorithm in
detail.

EXERCISES

Section 4.1

Exercise 4.1 Prove Theorem 4.1.

Exercise 4.2 Prove Algorithm 4.1 is correct.

Exercise 4.3 Obtain the network in Figure 4.7 (c).

Exercise 4.4 This exercise concerns an expanded model of the auto pricing

problem discussed in Example 4.9. Suppose we have the following random vari-
ables:

Variable | What the Variable Represents

Wholesale price

Mean profit per car realized by Dealer-1 in past year
Dealer-1’s asking price

Mean profit per car realized by Dealer-2 in past year
Dealer-2’s asking price

Production cost

Marketing cost

An expert’s estimate of the production cost

An expert’s estimate of the marketing cost
Manufacturer’s profit

~SHNQOmZOS

Suppose further that the relationships among the variables are modeled by the
Bayesian network in Figure 4.16.
a) Initialize this network.
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T, = 3002 T.=1000?

@

Figure 4.16: A Bayesian network representing an expanded model of the auto
pricing problem.

b) Suppose we learn that the expert estimates the production cost to be $5,000
and the Marketing cost to be $2,000. That is, we have the following instantia-
tions:

X = 5000

R = 2000.

Update the network based on this information.
¢) Suppose next we learn that Dealer-1 has an asking price of $8,000 and

Dealer-2 has an asking price of $8,000. That is, we now also have the following
instantiations:

D = 8000
E = 10000.

Update the network based on this additional information.

Section 4.2
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Exercise 4.5 In Fxample 4.11, it was left as an exercise to use Bayes’ Theorem
to compute the conditional probability the Bulls won given there is a big crowd
overflowing into the parking lot. Do this.

Exercise 4.6 Assuming the probabilities in Example 4.12, compute the condi-
tional probability of Joe having lung cancer given that he has a positive chest
X-ray.

Exercise 4.7 Suppose we have the Bayesian network in Figure 4.11. If we
instantiate Xo to 2 and X5 to 1, then A = {Xo, X5} and a = {2, 1}. Suppose an
application of Algorithm 4.2 with m =5 yields the following data:

Item X1 X2 X3 X4 X5
I, | 12121
Iy 1 1
L |22 1]2]1
Iy 1 2 1 1
I | 22| 1|22
Iy | 2 |1
L | 1|2 1] 2|1
Iy |22 2] 1]1

Show the resultant estimates of the conditional probabilities of the remaining
variables.

Exercise 4.8 In Example 4.19, it was left as an exercise to compute the con-
ditional probabilities of the remaining variables besides X1. Do so.

Exercise 4.9 Suppose we have the Bayesian network in Figure 4.11. If we
instantiate X5 to 2 and X5 to 1, then A = { X3, X5} and a = {2, 1}. Suppose an
application of Algorithm 4.3 with m = 5 yields the following data:

Item Xl X2 X3 X4 X5
I 2 2 1 2 1
I 1 2 2 1 1
L | 2122121
Ll 12111111
L |2 2]1]2]1

Compute the score of each item and the estimates of the conditional proba-
bilities.

Section 4.3

Exercise 4.10 Sort the diseases in Example 4.22 in non-decreasing order ac-
cording to their prior probabilities, and then apply Algorithm 4.4 to find a most
probable explanation. How many nodes were generated? Is it more or less than
the number of nodes generated when we did not sort them in Example 4.227
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Chapter 5

Influence Diagrams

Consider again the Bayesian network in Figure 4.13. If a patient was, for ex-
ample, a smoker and had a positive chest X-ray, a physician might consult that
network to determine how probable it was that the patient had lung cancer or
had bronchitis, or to determine the most probable explanation. The physician
would then use this and other information to arrive a decision as to how to
treat the patient. In general, the information obtained by doing inference in a
Bayesian network can be used to arrive at a decision even though the Bayesian
network itself does not recommend a decision. In this chapter, we extend the
structure of a Bayesian network so that the network actually does recommend
a decision. Such a network is called an influence diagram. Before discussing in-
fluence diagrams in Section 5.2, we present decision trees in Section 5.1, which
are mathematically equivalent to influence diagrams, and which are often sim-
pler when the problem instance is small. After all this, Section 5.3 introduces
dynamic Bayesian networks and influence diagrams.

5.1 Decision Trees

After presenting some simple examples of decision trees, we discuss several issues
regarding their use.

5.1.1 Simple Examples
We start with the following example:

Example 5.1 Suppose your favorite stock NASDIP is down-graded by a rep-
utable analyst and it plummets from $40 to $10 per share. You feel this is a good
buy, but there is a lot of uncertainty involved. NASDIP’s quarterly earnings are
about to be released and you think they will be good, which should positively influ-
ence its market value. However, you also think there is a good chance the whole
market will crash, which will negatively influence NASDIP’s market value. In
an attempt to quantify your uncertainty, you decide there is a .25 probability

239
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$5

$500

Buy NASDIP $10

NASDIP

$1000

$2000

Leave $1000 in bank
$1005

Figure 5.1: A decision tree representing the problem instance in Example 5.1.

the market will crash, in which you case feel NASDIP will go to $5 by the end
of the month. If the market does not crash, you feel by the end of the month
NASDIP will be either at $10 or at $20 depending on the earnings report. You
think it is twice as likely it will be at $20 as at $10. So you assign a .5 probability
to NASDIP being at $20 and a .25 probability to it being at $10 at month end.
Your decision now is whether to buy 100 shares of NASDIP for $1000 or to
leave the $1000 in the bank where it will earn .005 interest in the next month.

One way to make your decision is to determine the expected value of your
investment if you purchase NASDIP and compare that value to the amount of
money you would have if you put the money in the bank. Let X be a random
variable, whose value is the worth of your $1000 investment in one month if you
purchase NASDIP. If NASDIP goes to $5, your investment will be worth $500,
if it stays at $10, your investment will be worth $1000, and if it goes to $20, it
will be worth $2000. Therefore,

E(X) = .25(3500) + .25($1000) + .5($2000)
$1375.

If you leave the money in the bank, your investment with be worth
1.005($1000) = $1005.

If you are what is called an ‘expected value maximizer’, your decision would
be to buy NASDIP.

The problem instance in the previous example can be represented by a deci-
sion tree. That tree is shown in Figure 5.1. A decision tree contains two kinds
of nodes: chance (or uncertainty) nodes representing random variables; and
decision nodes representing decisions to be made. We depict these nodes as
follows:
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$5
$500
Buy NASDIP $10
NASDIP $1000
$1375
$2000
D 5
Leave $1000 in bank
$1005

Figure 5.2: The solved decision tree given the decision tree in Figure 5.1.

@ - chance node

- decision node

A decision represents a set of mutually exclusive and exhaustive actions the
decision maker can take. Each action is called an alternative in the decision.
There is an edge emanating from a decision node for each alternative in the
decision. In Figure 5.1, we have the decision node D with the two alternatives
‘Buy NASDIP’ and ‘Leave $1000 in bank.” There is one edge emanating from a
chance node for each possible outcome (value) of the random variable. We show
the probability of the outcome on the edge and the utility of the outcome to
the right of the edge. The utility of the outcome is the value of the outcome to
the decision maker. When an amount of money is small relative to one’s total
wealth, we can usually take the utility of an outcome to be the amount of money
realized given the outcome. Currently, we make that assumption. Handling the
case where we do not make that assumption is discussed in Section 5.1.2. So,
for example, if you buy 100 shares of NASDIP and NASDIP goes to $20, we
assume the utility of that outcome to you is $2000. In Figure 5.1, we have
the chance node NASDIP with three possible outcome utilities, namely $500,
$1000, and $2000. The expected utility FU of a chance node is defined
to be the expected value of the utilities associated with its outcomes. The
expected utility of a decision alternative is defined to be the expected utility
of the chance node encountered if that decision is made. If there is certainty
when the alternative is taken, this expected utility is the value of that certain
outcome. So

EU(Buy NASDIP) = EU(NASDIP) = .25($500) + .25($1000) + .5($2000)
$1375
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EU (Leave $1000 in bank) = $1005.

Finally, the expected utility of a decision node is defined to be the maximum of
the expected utilities of all its alternatives. So

EU(D) = max($1375, $1005) = $1375.

The alternative chosen is the one with the largest expected utility. The process
of determining these expected utilities is called solving the decision tree.
After solving it, we show expected utilities above nodes and an arrow to the
alternative chosen. The solved decision tree, given the decision tree in Figure
5.1, is shown in Figure 5.2.

Another example follows.

Example 5.2 Suppose you are in the same situation as in Example 5.1 except,
instead of considering leaving your money in the bank, your other choice is buy
an option on NASDIP. The option costs $1000, and it allows you to buy 500
shares of NASDIP at $11 per share in one month. So if NASDIP is at $5 or
$0 per share in one month, you would not exercise your option and you would
lose $1000. However, if NASDIP is at $20 per share in one month, you would
exercise your option, and your $1000 investment would be worth

500($20 — $11) = $4500.

Figure 5.3 shows a decision representing this problem instance. From that tree,
we have

EU(Buy option) = EU(NASDIP,) = .25(%0) + .25(30) + .5($4500)
$2250.

Recall that EU(Buy NASDIP) is only $1375. So our decision would be to buy
the option. It is left as an exercise to show the solved decision tree.

Notice that the decision tree in Figure 5.3 is symmetrical, whereas the one
i Figure 5.2 is not. The reason is that we encounter the same uncertain event
regardless of which decision is made. Only the utilities of the outcomes are

different.

5.1.2 Probabilities, Time, and Risk Attitudes

Before proceeding, we address some concerns you may have. First, you may
be wondering how an individual could arrive at the probabilities of .25, .5, and
.25 in Example 5.1. These probabilities are not relative frequencies; rather they
are subjective probabilities that represent an individual’s reasonable numeric
beliefs. The individual arrives at them by a careful analysis of the situation.
Methods for assessing subjective beliefs were discussed briefly in Section 1.1.1
and are discussed in more detail in [Neapolitan, 1996]. Even so, you may argue
that the individual surely must believe there are many possible future values
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$5

$500

Buy NASDIP NASDIP, $10 $1000

) = $2000
$5 $0
Buy option NASDIP, $10 $0

$4500

Figure 5.3: The decision tree modeling the investment decision concerning NAS-
DIP, when the other choice is to buy an option on NASDIP.

for a share of NASDIP. How can the individual claim the only possible values
are $5, $10 and $207 You are correct. Indeed, this author is the individual in
this example, which concerns a recent investment decision of his. Although I
believe there are many possible future values, I feel the values $5, and $10, and
$20 with probabilities .25, .5, and .25 are sufficient to represent my beliefs as far
as influencing my decision. That is, I feel that further refinement of my beliefs
would not affect my decision.

Secondly, you many wonder why we based the decision on the outcome in
one month. Why not two months, a year, etc.? When using decision analysis
in problems such as these, the decision maker must base the decision on the
outcome at some point in the future. It is up to the decision maker’s preferences
to determine that point. This was my decision, and I based my decision on my
status one month into the future.

Finally, you may wonder why we chose the alternative with the largest ex-
pected value. Surely, a person who is very risk-averse might prefer the sure
$1005 over the possibility of ending up with only $500. This is absolutely true,
and it is possible to incorporate one’s attitude towards risk into the decision.
We modeled the situation where the utility of the outcome is the same as the
amount of money realized given the outcome. As mentioned previously, many
people maximize expected value when the amount of money is small relative
to their total wealth. The idea is that in the long run one will end up better
off by so doing. On the other hand, in the current example, I would not in-
vest $100,000 in NASDIP because that is too much money relative to my total
wealth.
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Figure 5.4: The Usoo(x) = 1 — e~*/5% function.

0.87

0.67]

0.47]

0.27]

1000 2000  x 3000 4000 5000

Figure 5.5: The Uygoo(z) = 1 — e=%/1090 function.

One way to model an individual’s attitude towards risk is with a utility
function, which is a function that maps dollar amounts to utilities. An example
is the exponential utility function:

Ur(z)=1- e /R,

In this function the parameter R, called the risk tolerance, determines how
risk-averse the function is. As R becomes smaller, the function becomes more
risk-averse. Figure 5.4 shows Usgo(x), while Figure 5.5 shows Uyggg(z). Notice
that the both functions are concave (opening downward) and the one in Figure
5.5 is closer to being a straight line. The more concave the more risk-averse the
function is, a straight line is risk neutral, and a convex (opening upward) func-
tion is risk-seeking. The following example illustrates the use of this function.
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Example 5.3 Suppose we are making the decision in Example 5.1, and we use
the exponential utility function with R = 500. Then

EU(Buy NASDIP) = EU(NASDIP)
= 25Us500($500) + .25U500($1000) + .5U500($2000)

- 25 (1 _ 6—500/500) 195 (1 _ 6—1000/500)

5 (1 - 6—2000/500)
= ..86504.

EU(Leave $1000 in bank) = Usgo ($1005) = 1 — ~1095/5%0 — g6601.

If we modeled some individual’s attitude towards risk with this utility function,
that individual would choose to leave the money in the bank. It is left as an
exercise to show that using R = 1000 leads to the decision to buy NASDIP.

One way to determine your personal value of R is to consider a lottery in
which you will win $z with probability .5 and lose —$x/2 with probability .5.
Your value of R is the largest value of x for which you would choose the lottery
over doing nothing.

Modeling risk attitudes are discussed much more in [Clemen, 1996]. Hence-
forth, we simply assume the utility of an outcome is the same as the amount of
money realized given the outcome.

5.1.3 Solving Decision Trees

Next we show the general method for solving decision trees. There is a time
ordering from left to right in a decision tree. That is, any node to the right of
another node, occurs after that node in time. The tree is solved as follows:

Starting at the right,
proceed to the left
passing expected utilities to chance nodes;
passing maximums to decision nodes;
until the root is reached.

5.1.4 More Examples

We now present more complex examples of modeling with decision trees.

Example 5.4 Suppose Xia is a high roller and she is considering buying 10,000
shares of ICK for $10 a share. This number of shares is so high that if she
purchases them, it could affect market activity and bring up the price of ICK.
She also believes the overall value of the DOW industrial average will affect the
price of ICK. She feels that, in one month, the DOW will either be at 10,000
or 11,000, and ICK will either be at $5 or $20 per share. Her other choice is



246 CHAPTER 5. INFLUENCE DIAGRAMS

$50,000

$200,000

$50,000

$200,000

$250,000

$250,000

Figure 5.6: A decision tree representing Xia’s decision as to whether to buy ICK
or an option on ICK.
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to buy an option on ICK for $100,000. The option will allow her to buy 50,000
shares of ICK for $15 a share in one month. To analyze this problem instance,
she constructs the following probabilities:

P(ICK = $5|Decision = Buy ICK, DOW = 11,000) = .2
P(ICK = $5|Decision = Buy ICK, DOW = 10,000) = .5
P(ICK = $5|Decision = Buy option, DOW = 11,000) = .3
P(ICK = $5|Decision = Buy option, DOW = 10,000) = .6.

Furthermore, she assigns
P(DOW = 11,000) = .6.

This problem instance is represented by the decision tree in Figure 5.6. Next we
solve the tree:

EU(ICKy) = (.2)($50,000) + (.8)($200,000) = $170,000
EU(ICK,) = (.5)($50,000) + (.5)($200,000) = $125,000
EU(Buy ICK) = EU(DOW?) = (.6)($170,000) + (.4)($125,000) = $152,000
EU(ICK3) = (.3)($0) + (.7)($250,000) = $175,000
EU(ICK,) = (.6)($0) + (.4)($250,000) = $100, 000
EU(Buy option) = EU(DOW>) = (.6)($175,000) + (.4)($100,000) = $145, 000
EU(D) = max($152, 000, $145, 000) = $152, 000.
The solved decision tree is shown in Figure 5.7. The decision is buy ICK.

The previous example illustrates a problem with decision trees. That is, the
representation of a problem instance by a decision tree grows exponentially with
the size of the instance. Notice that the instance in Examples 5.4 only has one
more element in it than the instance in Example 5.2. That is, it includes that
uncertainty about the DOW. Yet its representation is twice as large. So it is
quite difficult to represent a large instance with a decision tree. We will see in
the next section that influence diagrams do not have this problem. Before that,
we show more examples.

Example 5.5 Sam has the opportunity to buy a 1996 Spiffycar automobile for
$10,000, and he has a prospect who would be willing to pay $11,000 for the auto
if it is in excellent mechanical shape. Sam determines that all mechanical parts
except for the transmission are in excellent shape. If the transmission is bad, it
will cost Sam $3000 to repair it, and he would have to repair it before the prospect
would buy it. So he would only end up with $8000 if he bought the vehicle and
its transmission was bad. He cannot determine the state of the transmission
himself. However, he has a friend who can run a test on the transmission.
The test is not absolutely accurate. Rather 30% of the time it judges a good
transmission to bad and 10% of the time it judges a bad transmission to be
good. To represent this relationship between the transmission and the test, we
define the random variables which follow.
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Figure 5.7: The solved decision tree given the decision tree in Figure 5.6.
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good

$11,000
$9722 571429
$10,000
. bad
positive $8000
Dl 428571
42

\( Do not buy $10.000
@ good 411 000

$10,897

Buy .965517
$10,897
. bad
negative $8000
D2 .034483
.58
Do not buy $10,000

Figure 5.8: The decision tree representing the problem instance in Example 5.5.

Variable | Value When the Variable Takes This Value
Test positive | Test judges the transmission is bad
negative | Test judges the transmission is good
Tran good Transmission is good
bad Transmission is good

The previous discussion implies we have these conditional probabilities:
P(Test = positive|Tran = good) = .3

P(Test = positive|Tran = bad) = .9.

Furthermore, Sam knows that 20% of the 1996 Spiffycars have bad transmis-
sions. That is,
P(Tran = good) = .8.

Sam is going to have his friend run the test for free, and then he will decide
whether to buy the car.

This problem instance is represented in the decision tree in Figure 5.8. Notice
first that, if he does not buy the vehicle, the outcome is simply $10,000. This
is because the point in the future is so near that we can neglect interest as
negligible. Note further that the probabilities in that tree are not the ones stated
in the example. They must be computed from the stated probabilities. We do
that next. The probability on the upper edge emanating from the Test node is
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good 411,000
571429
$10,000
positive $8000
D 429571

42 1 \(
Do not buy $10,000
@ 9ood 411 000

Buy $10,897 965517

$10,897

negative $8000
D, .034483

.58

Do not buy $10,000

Figure 5.9: The solved decision tree given the decision tree in Figure 5.8.

the prior probability the test is positive. It is computed it as follows (Note that
we use our abbreviated notation.):

P(positive) = P(positive|good) P(good) + P(positive|bad)P(bad)
= (.3)(.8) +(.9)(.2) = 42.
The probability on the upper edge emanating from the Trany node is the prob-

ability the transmission is good given the test is positive. We compute it using
Bayes’ Theorem as follows:

P(positive|good) P(good)
P(positive)

P(good|positive) =

_ (38 _
= S = 5T,

It is left as an exercise to determine the remaining probabilities in the tree.
Next we solve the tree:

EU(Tran,) = (.571429)($11,000) + (.428571)($8000) = $9714

EU(D;) = max($9714, $10, 000) = $10, 000
EU(Trany) = (.965517)($11, 000) + (.034483)($8000) = $10,897
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EU(D5) = max($10,897, $10,000) = $10, 897.

We need not compute the expected value of the Test node because there are no
decisions to the left of it. The solved decision tree is shown in Figure 5.9. The
decision is to not buy the vehicle if the test is positive and to buy it if the test
18 negative.

The previous example illustrates another problem with decision trees. That
is, the probabilities needed in a decision tree are not always the ones that are
readily available to us. So we must compute them using the law of total proba-
bility and Bayes’ theorem. We will see that influence diagrams do not have this
problem either.

More examples follow.

Example 5.6 Suppose Sam is in the same situation as in Example 5.5 except
that the test is not free. Rather it costs $200. So Sam must decide whether to
run the test, buy the car without running the test, or keep his $10,000. The
decision tree representing this problem instance is shown in Figure 5.10. Notice
that the outcomes when the test is run are all $200 less than their respective
outcomes in Example 5.5. This is because it cost $200 to run the test. Note
further that, if the vehicle is purchased without running the test, the probability
of the transmission being good is simply its prior probability .8. This is because
no test was run. So our only information about the transmission is our prior
information. Next we solve the decision tree. It is left as an exercise to show

EU(Dy) = $9800

EU(D,) = $10, 697.

Therefore,

EU(Test) = (.42)($9800) + (.58)($10,697) = $10, 320.
Furthermore,

EU(Trans) = (.8)($11,000) + (.2)($8000) = $10, 400.
Finally,

EU(D3) = max($10, 320, $10, 400, $10,000) = $10, 400.

So Sam’s decision is to buy the vehicle without running the test. It is left as an
exercise to show the solved decision tree.

The following two examples illustrate cases in which the outcomes are not
numeric.

Example 5.7 Suppose Leonardo has just bought a new suit, he is about to leave
for work, and it looks like it might rain. Leonardo has a long walk from the
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good 410,800
571429

positive $7800
D 428571
42 !
Do not buy $9800
Run test @
900d_ 410,800
_ 965517
negative $7800
D2 .034483
.58
Do not buy
$9800

900d 411 000

Buy Spiffycar
Tran,

$8000

Do not buy
$10,000

Figure 5.10: The decision tree representing the problem instance in Example

9.6.



5.1. DECISION TREES 253

rain

suit ruined

Do not
take umbrella

no rain

suit not ruined

Take umbrella suit not ruined,

inconveniece

Figure 5.11: The decision tree representing the problem instance in Example
5.7.

train to his office. So he knows if it rains and he does not have his umbrella,
his suit will be ruined. His umbrella will definitely protect his suit from the rain.
However, he hates the inconvenience of lugging the umbrella around all day.
Given he feels there is a .4 probability it will rain, should he bring his umbrella?
A decision tree representing this problem instance is shown in Figure 5.11. We
cannot solve this tree yet because its outcomes are not numeric. We can give
them numeric utilities as follows. Clearly, the ordering of the outcomes from
worst to best is as follows:

1. suit ruined
2. suit not ruined, inconvenience
3. suit not ruined.
We assign a utility of 0 to the worst outcome and a utility of 1 to the best
outcome. So
U (suit ruined) =0
U (suit not ruined) = 1.

Then we consider lotteries (chance nodes) L, in which Leonardo gets outcome
‘suit not ruined’ with probability p and outcome ‘suit ruined’ with probability
1—p. The utility of ‘suit not ruined, inconvenience’ is defined to be the expected
utility of the lottery L,y for which Leonardo would be indifferent between lottery
L, and being assured of ‘suit not ruined, inconvenience’. We then have

U (suit not ruined, inconvenience) = EU(L,y)
p'U(suit not ruined)
+(1 = p"U (suit ruined)
= PO +1-po=p.
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rain

0  suitruined

Do not
take umbrella

no rain

1  suit not ruined

Take umbrella suit not ruined,

inconveniece

Figure 5.12: The decision tree with numeric values representing the problem
instance in Example 5.7.

Let’s say Leonardo decides p' = .8. Then
U (suit not ruined, inconvenience) = .8

The decision tree with these numeric values is shown in Figure 5.12. We solve
that decision tree next:

EU(R) =(4)(0)+ (.6)(1) = .6
EU(D) = max(.6,.8) = .8.
So the decision is to take the umbrella.

The method used to obtain numeric values in the previous example easily
extends to the case where there are more than 3 outcomes. For example, suppose
there was a fourth outcome ‘suit goes to cleaners’ in between ‘suit not ruined,
inconvenience’ and ‘suit not ruined’ in the preference ordering. We consider
lotteries L, in which Leonardo gets outcome ‘suit not ruined’” with probability ¢
and outcome ‘suit not ruined, inconvenience’ with probability 1 —q. The utility
of ‘suit goes to cleaners’ is defined to be the expected utility of the lottery L
for which Leonardo would be indifferent between lottery Ly and being assured
of ‘suit goes to cleaners’. We then have

U (suit goes to cleaners) = EU(Ly)

¢ U (suit not ruined)
+(1 — ¢')U((suit not ruined, inconvenience)
= J()+(1—-¢)(8)=.8+.2¢.
Let’s say Leonardo decides ¢' = .6. Then

U (suit goes to cleaners) = .8 4 (.2)(.6) = .92.
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no death

3 sore
999997 throat days
anaphylaxis
death
000003 dead
D .
Do not treat 4 sore
throat days

Figure 5.13: A decision tree modeling Amit’s decision concerning being treated
for streptococcal infection.

Next we give an example from the medical domain.

Example 5.8 'Amit, a 15 year old high school student, has been definitively
diagnosed with streptococcal infection, and he is considering having a treatment
which is known to reduce the number of days with a sore throat from 4 to 3. He
learns however that the treatment has a .000003 probability of causing death due
to anaphylaxis. Should he have the treatment?

You may argue that, if he may die from the treatment, he certainly should not
have it. However, the probability of dying is extremely small, and we daily accept
small risks of dying in order to obtain something of value to us. For example,
many people take a small risk of dying in a car accident in order to arrive at
work. We see then that we cannot discount the treatment based solely on that
risk. So what should Amit do? Next we apply decision analysis to recommend a
decision to him. Figure 5.183 shows a decision tree representing Amit’s decision.
To solve this problem instance we need to quantify the outcomes in that tree.
We can do this using quality adjusted life expectancies (QALE). We ask
Amit to determine what one year of life with a sore throat is worth relative to
one year of life without one. We will call such years ‘well years’. Let’s say he
says it is worth .9 well years. That is, for Amit

1 year with sore throat s equivalent to .9 well years.
We then assume a constant proportional trade-off. That is, we assume

the time trade-off associated with having a sore throat is independent of the
time spent with one (The validity of this assumption and alternative models are

I This example is based on an example in [Nease and Owens, 1997]. Although the informa-
tion is not fictitious, some of it is controversial.
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discussed in [Nease and Owens, 1997].). Given this assumption, for Amit
t years with sore throat s equivalent to .9t well years.

The value .9 is called the time-trade-off quality adjustment for a sore throat.
Another way to look at it is that Amit would give up .1 years of life to avoid
having a sore throat for .9 years of life. Now, if we let t be the amount of time
Amit will have a sore throat due to this infection, and [ be Amit’s remaining life
expectancy, we define his quality QALE as follows:

QALE(l,t) = (I —t) + .9t.

From life expectancy charts, we determine Amit’s remaining life expectancy is
60 years. Converting days to years, we have the following:

3 days = .008219 years

4 days = .010959 years.
Therefore, Amit’s QALE’s are as follows:

QALE(60 yrs, 3 sore throat days) 60 — .008219 + .9(.008219)

= 59.999178

QALE(60 yrs, 4 sore throat days) = 60— .010959 + .9(.010959)
= 59.998904.

Figure 5.14 shows the decision tree in Figure 5.13 with the actual outcomes
augmented with QALE’s. Next we solve that tree:

EU(Treat) = EU(A) = (.999993)(59.999178) + (.000003)(0)
59.998758

EU (Do not treat) = 59.998904
EU(D) = max(59.998758, 59.998904) = 59.998904.

So the decision is to not treat, but just barely.

Example 5.9 This example is an elaboration of the previous one. Actually
streptococcus infection can lead to rheumatic heart disease (RHD), which is less
probable if the patient is treated. Specifically, if we treat a patient with strepto-
coccus infection, the probability of rheumatic heart disease is .000013, while if
we do not treat the patient, the probability is .000063. The rheumatic heart dis-
ease would be for life. So Amit needs to take all this into account. First he must
determine time trade-off quality adjustments both for having rheumatic heart
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3 sore
throat days

no death

.999997
59.999178 yrs

anaphylaxis

death dead
D .000003 0vyrs
4 sore
Do not treat throat days

59.998904 yrs

Figure 5.14: The decision tree in Figure 5.13 with the actual oucomes augmented
by QALE’s.

disease alone and for having it along with a sore throat. Suppose he determines
the following:
1 year with RHD is equivalent to 15 well years.

1 year with sore throat and RHD 15 equivalent to .1 well years.

We then have

3 3
ALFE HD = —— (.1 — | (.1
Q (60 yrs, RHD, 3 sore throat days) (60 365) (.15) + (365) (.1)
= 8.999589
QALE(60 yrs, RHD, 4 sore throat days) = (60— —=) (15) + (—=) (.1)
yrs, , 4 sore throat days) = T 265 ) ¢
= 8.999452.

We have already computed QALE’s for 8 or 4 days with only a sore throat in
the previous example. Figure 5.15 shows the resultant decision tree. We solve
that decision tree next:

EU(RHD;) = (.000013)(8.999569) + (.999987)(59.999178)
= 59.998515
EU(Treat) = EU(A) = (.999997)(59.998515) + (.000003)(0)

99.998335
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3 sore throat
yes dayS, RHD

000013 ¢ 599589 yrs

no death
.999997 3 sore throat

days, no RHD
Treat

999987 59 999178 yrs

anayphylaxis death dead

.000003 Oyrs

4 sore throat
yes dayS, RHD

Do not .000063

treat 8.999452 yrs

RHD

4 sore throat
no days, no RHD

999937 59 998904 yrs

Figure 5.15: A decision tree modeling Amit’s decision concerning being treated
for streptococcal infection when rheumatic heart disease is considered.

EU(Do not treat) = FEU(RHD,)
(.000063)(8.999452) + (.999937)(59.998904)
= 59.995691

EU (D) = max(59.998335, 59.995691) = 59.998335.

So now the decision is to treat, but again barely.

You may argue that, in the previous two examples, the difference in the
expected utilities is negligible because the number of significant digits needed to
express it is far more than the number of significant digits in Amit’s assessments.
This argument is reasonable. However, the utilities of the decisions are so close
because the probabilities of both anaphylaxis death and rheumatic heart disease
are so small. In general, this situation is not always the case. It is left as an
exercise to rework the previous example with the probability of rheumatic heart
disease being .13 instead of .000063.

Another consideration in medical decision making is the financial cost of
the treatments. In this case, the value of an outcome is a function of both the
QALE and the financial cost associated with the outcome.
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5.2 Influence Diagrams

In the previous section, we noted the following two difficulties with decision
trees. First, the representation of a problem instance by a decision tree grows
exponentially with the size of the instance. Second, the probabilities needed in
a decision tree are not always the ones that are readily available to us. Next
we present an alternative representation of decision problem instances, namely
influence diagrams, which do not have either of these difficulties. First we discuss
representing problem instances with influence diagrams; then we discuss solving
influence diagrams.

5.2.1 Representing with Influence Diagrams

An influence diagram contains three kinds of nodes: chance (or uncer-
tainty) nodes representing random variables; decision nodes representing
decisions to be made; and one utility node, which is a random variable whose
possible values are the utilities of the outcomes. We depict these nodes as
follows:

Q - chance node

- decision node

<> - utility node

The edges in an influence diagram have the following meaning:

Value of the node is probabilistically
dependent on the value of the parent.

Value of the parent is known at the time the decision
is made; hence the edge represents sequence.

Value of the node is deterministically

A’Q dependent on the value of the parent.

The chance nodes in an influence diagram satisfy the Markov condition with
the probability distribution. That is, for each chance node X, {X} is condi-
tionally independent of the set of all its nondescendents given the set of all its
parents. So an influence diagram is actually a Bayesian network augmented

with decision nodes and a utility node. There must be an ordering of the de-
cision nodes in an influence diagram based on the order in which the decisions
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P(NASDIP = $5) = .25
P(NASDIP = $10) = .25
P(NASDIP = $20) = .5

S
o J—<0>

d1 = Buy NASDIP U(d1,$5) = $500

d2 = Leave $1000 inbank  y(d1, $10) = $1000
U(d1, $20) = $2000
U(d2,n) = $1005

Figure 5.16: An influence diagram modeling your decision as to whether to buy
NASDIP.

are made. The order is specified using the edges between the decision nodes.
For example, if we have the order

Dl;DQ; D3a

then there are edges from D1 to Do and Ds, and an edge from Do to Ds.
To illustrate influence diagrams, we next represent the problem instances, in
the examples in the section on decision trees, by influence diagrams.

Example 5.10 Recall Example 5.1 in which you felt there is a .25 probability
NASDIP will be at $5 at month’s end, a .5 probability it will be at $20, and
a .25 probability it will be at $10. Your decision is whether to buy 100 shares
of NASDIP for $1000 or to leave the $1000 in the bank where it will earn .005
interest. Figure 5.16 shows an influence diagram representing this problem in-
stance. Notice a few things about that diagram. There is no edge from D to
NASDIP because your decision as to whether to buy NASDIP has no affect
on its performance (We assume your 100 shares is not enough to affect market
actiity.). There is no edge from NASDIP to D because at the time you make
your decision you do not know NASDIP’s value in one month. There are edges
from both NASDIP and D to U because your utility depends both on whether
NASDIP goes up and whether you buy it. Notice that if you do not buy it, the
utility is the same regardless of what happens to NASDIP. This is why we write
U(d2,n) = $1005. The variable n represents any possible value of NASDIP.

Example 5.11 Recall Example 5.2, which concerned the same situation as Fzx-
ample 5.1, except that your choices were either to buy NASDIP or to buy an
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P(NASDIP = $5) = .25
P(NASDIP = $10) = .25
P(NASDIP = $20) = .5

S
o 0>

d1 = Buy NASDIP U(d1,$5) = $500

d2 = Buy option u(d1, $10) = $1000
U(d1, $20) = $2000
U(d2,$5) = $0

U(d2,$10) = $0
U(d2,$20) = $4500

Figure 5.17: An influence diagram modeling your decision as to whether to buy
NASDIP when the other choice is to buy an option.

option on NASDIP. Recall further that if NASDIP is at $5 or $0 per share in
one month, you would not exercise your option and you would lose your $1000;
and, if NASDIP is at $20 per share in one month, you would exercise your
option and your $1000 investment would be worth $4500. Figure 5.17 shows an
influence diagram representing this problem instance. Recall that when we rep-
resented this instance with a decision tree (Figure 5.8) that tree was symmetrical
because we encounter the same uncertain event regardless of which decision is
made. This symmetry manifests itself in the influence diagram in that the value
of U depends on the value of the chance node NASDIP regardless of the value
of the decision node D.

Example 5.12 Recall Example 5.4 in which Xia is a considering either buying
10,000 shares of ICK for $10 a share, or an option on ICK for $100,000 which
would allow her to buy 50,000 shares of ICK for $15 a share in one month.
Recall further that she believes that, in one month, the DOW will either be at
10,000 or at 11,000, and ICK will either be at $5 or at $20 per share. Finally
recall that she assigns the following probabilities:

P(ICK = $5|DOW = 11,000, Decision = Buy ICK) = .2

P(ICK = $5|DOW = 11,000, Decision = Buy option) = .3
P(ICK = $5|DOW = 10,000, Decision = buy ICK) = .5
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P(ICK=$5|Dow=11,000,D=d1) = .2
P(ICK=$5|Dow=11,000,D=d2) = .3
P(Dow=11,000) = .6 P(ICK=$5|Dow=10,000,D=d1) = .5
P(Dow=10,000) = .4 P(ICK=$5|Dow=10,000,D=d2) = .6

Ey——>{1e
o o

d1 = Buy ICK U(d1,$5) = $50,000
d2 = Buy option U(d1,$20) = $200,000
U(d2,$5) = $0

U(d2,$20) = $250,000

Figure 5.18: An influence diagram modeling Xia’s decision concerning buying
ICK or an option on ICK.

P(ICK = $5|DOW = 10,000, Decision = Buy option) = .6
P(DOW = $11,000) = .6.

Figure 5.18 shows an influence diagram representing this problem instance. No-
tice that the value of ICK depends not only on the value of the DOW but also
on the decision D. This is because Xia’s purchase can affect market activity.
Note further that this instance has one more component than the instance in
FEzxample 5.11, and we needed to add only one more node to represent it with an
influence diagram. So the representation grew linearly with the size of the in-
stance. By contrast, recall that, when we represented the instances with decision
trees, the representation grew exponentially.

Example 5.13 Recall Example 5.5 in which Sam has the opportunity to buy
a 1996 Spiffycar automobile for $10,000, and he has a prospect who would be
willing to pay $11,000 for the auto if it is in excellent mechanical shape. Recall
further that if the transmission is bad, Sam will have to spend $3000 to repair it
before he could sell the vehicle. So he would only end up with $8000 if he bought
the vehicle and its transmission was bad. Finally, recall he has a friend who can
run a test on the transmission, and we have the following:

P(Test = positive|Tran = good) = .3

P(Test = positive|Tran = bad) = .9
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P(Test=positive| Tran=good) = .3
P(Test=positive| Tran=bad) = .9 P(Tran=good) = .8

(e
o o>

d1 = Buy Spiffycar U(d1,good) = $11,000
d2 = Do not buy U(d1,bad) = $8000
U(d2,t) = $10,000

Figure 5.19: An influence diagram modeling Sam’s decision concerning buying
the Spiffycar.

P(Tran = good) =

Figure 5.19 shows an influence diagram representing this problem instance. No-
tice that there is an arrow from Tran to Test because the value of the test is
probabilistically dependent on the state of the transmission, and there is an ar-
row from Test to D because the outcome of the test will be known at the time
the decision is made. That is, D follows Test in sequence. Note further that the
probabilities in the influence diagram are the ones we know. We did not need to
use the law of total probability and Bayes’ Theorem to compute them, as we did
when we represented the instance with a decision tree.

Example 5.14 Recall Example 5.6 in which Sam is in the same situation as in
Example 5.5 except that the test is not free. Rather it costs $200. So Sam must
decide whether to run the test, buy the car without running the test, or keep
his $10,000. Figure 5.20 shows an influence diagram representing this problem
instance. Notice that there is an edge from R to D because decision R is made
before decision D. Note further than again the representation of the instance
grew linearly with the size of the instance.

You may wonder why there is no edge from R to Test since the value of
Test is dependent on the decision R in the sense that the test will not be run
if Sam’s choice is r2 or r3. If a decision only affects whether the ‘experiment’
at a chance node takes place, and does not affect the outcome of the experiment
if it does take place, there is mno need to draw an edge from the decision node
to the chance node. The reason is as follows: To each influence diagram there
corresponds a decision tree, which represents the same problem instance as the
influence diagram. By not including an edge from R to Test, we get a decision
tree that is symmetrical concerning the Test node rather than the one in Figure
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P(Test=positive| Tran=good) = .3 P(Tran=good) = .8
P(Test=positive| Tran=bad) = .9 P(Tran=bad) = .2

o] <>

~ o~

rl = Run test d1 = Buy Spiffycar U(r1,d1,good) = $10,800
r2 = Buy Spiffycar  d2 = Do not buy U(r1,d1,bad) = $7800
r3 = Do not buy U(r1,d2,t) = $9800

U(r2,d,good) = $11,000
U(r2,d, bad) = $8000
U(r3,d,t) = $10,000

Figure 5.20: An influence diagram modeling Sam’s decision concerning buying
the Spiffycar when he must pay for the test.

5.10. For the choices that do not run the test, the utilities of the outcomes will
be the same for both values of the Test node. So the solution to this decision
tree will be the same as the solution to the one in Figure 5.10. Contrast this
with the situation in Example 5.12, in which Xia’s decision does affect the value
of ICK. So we must have an arrow from the decision node D to the chance node
ICK.

Next we show a more complex instance, which we did not represent with a
decision tree.

Example 5.15 Suppose Sam is in the same situation as in Example 5.14, but
with the following modifications. First, Sam knows that 20% of the Spiffycars
were manufactured in a plant that produced lemons and 80% of them were man-
ufactured in a plant that produced peaches. Furthermore, he knows 40% of the
lemons have good transmissions and 90% of the peaches have good transmis-
sions. Also, 30% of the lemons have fine alternators and 80% of the peaches
have fine alternators. If the alternator is faulty (not fine), it will cost Sam $300
to repair it before he can sell he vehicle. Figure 5.21 shows an influence diagram
representing this problem instance. Notice that the set of chance nodes in the
influence diagram constitute a Bayesian network. For example, Tran and Alt
are not independent, but they are conditionally independent given Car.

We close with a large problem instance in the medical domain.
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P(Test=positive| Tran=good) = .3  P(Tran=good|Car=lemon) = .4 P(Car=lemon) = .2
P(Test=positive| Tran=bad) = .9 P(Tran=good|Car=peach) = .9 P(Car=peach) = .8

~_ . o~

rl = Run test d1 = Buy Spiffycar U(rl,d1,good,fine) = $10,800 P(Alt=fine|Car=lemon) = .3
r2 = Buy Spiffycar  d2 = Do not buy U(rl,d1,good,faulty) = $10,500 P(Alt=fine|Car=peach) = .8
r3 = Do not buy U(r1,d1,bad, fine) = $7800

U(r1,d1,bad,faulty) = $7500
U(r1,d2,t,a) = $9800
U(r2,d,good,fine) = $11,000
U(r2,d,good,faulty) = $10,700
U(r2,d,bad,fine) = $8000
U(r2,d, bad,faulty) = $7700
U(r3,d,t,a) = $10,000

Figure 5.21: An influence diagram modeling Sam’s decision concerning buying
the Spiffycar when the alternator may be faulty.

Example 5.16 This ezample is taken from [Nease and Owens, 1997]. Suppose
a patient has a non-small-cell carcinoma of the lung. The primary tumor is 1
cm. in diameter, a chest X-ray indicates the tumor does not abut the chest wall
or mediastinum, and additional workup shows mo evidence of distant metas-
tases. The preferred treatment in this situation is thoracotomy. The alternative
treatment is radiation. Of fundamental importance in the decision to perform
thoracotomy is the likelihood of mediastinal metastases. If mediastinal metas-
tases are present, thoracotomy would be contraindicated because it subjects the
patient to a risk of death with no health benefit. If mediastinal metastases are ab-
sent, thoracotomy offers a substantial survival advantage as long as the primary
tumor has not metastasized to distant organs.

We have two tests available for assessing the involvement of the mediastinum.
They are computed tomography (CT scan) and mediastinoscopy. This problem
instance involves three decisions. First, should the patient undergo a CT scan?
Second, given this decision and any CT results, should the patient undergo medi-
astinoscopy? Third, given these decisions and any test results, should the patient
undergo thoracotomy.

The CT scan can detect mediastinal metastases. The test is not absolutely
accurate. Rather, if we let MedMet be a variable whose values are present and
absent depending on whether or not mediastinal metastases are present, and
CTest be a variable whose values are cpos and cneg depending on whether or
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not the CT scan is positive, we have

P(CTest = cpos|MedMet = present) = .82

P(CTest = cpos|MedMet = absent) = .19.

The mediastinoscopy is an invasive test of mediastinal lymph nodes for deter-
mining whether the tumor has spread to those modes. If we let Mtest be a
variable whose values are mpos and mneg depending on whether or not the
mediastinoscopy is positive, we have

P(MTest = mpos|MedMet = present) = .82

P(MTest = mpos|MedMet = absent) = .005.

The mediastinoscopy can cause death. If we let M be the decision concerning
whether to have mediastinoscopy, ml be the choice to have it, and m2 be the
choice not to have it, and MedDeath be a variables whose values are mdie and
mlive depending on whether the patient dies from the mediastinoscopy, we have

P(MedDeath = mdie| M = m1) = .005

P(MedDeath = mdie|M = m2) = 0.

The thoracotomy has a greater chance of causing death than the alternative treat-
ment radiation. If we let T' be the decision concerning which treatment to have,
tl be the choice to undergo thoracotomy, and t2 be the choice to undergo radi-
ation, and Thordeath be a variables whose values are tdie and tlive depending
on whether the patient dies from the treatment, we have

P(ThorDeath = tdie|T = t1) = .037

P(ThorDeath = tdie|T = t2) = .002.

Finally, we need the prior probability that mediastinal metastases are present.
We have

P(MedMet = present) = .46.

Figure 5.22 shows an influence diagram representing this problem instance.
Note that we considered quality adjustments to life expectancy (QALE) and fi-
nancial costs to be insignificant in this example. The value node is only in terms
of life expectancy.

5.2.2 Solving Influence Diagrams

We illustrate how influence diagrams can be solved using examples.
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P(cpos|present) = .82
P(cpos|absent) = .19

t1 = Do thoracotomy
t2 = Do radiation

P(present) = .46

U(t1,present tlive,mlive) = 1.8 yrs
U(tl,absent tlive, mlive) = 4.45 yrs
U(t2,present,tlive,mlive) = 1.8 yrs
U(t2,absent,tlive,mlive ) = 2.64 yrs
U(t,m,tdie,d) =0
U(t,m,d,mdie) =0

P(mpos|present) = .82
P(mpos|absent) = .00

P(tdie| t1) = .037

P(tdie| t2) = .002
C
cl1=DoCT [
c2 = Do not do
M
m1 = Do mediastinoscopy P(mdie| m1) = .005
m2 = Do not do P(mdie| m2) =0

Figure 5.22: An influence diagram modeling the decision as to whether to be
treated with thoracotomy.

Example 5.17 Consider the influence diagram in Figure 5.16, which was de-
veloped in Example 5.10. To solve the influence diagram, we need to determine
which decision choice has the largest expected utility. The expected utility of a
decision choice is the expected value E of U given the choice is made. We have

EU(d1)

EU(d2)

E(U|d1)

P($5|d1)U(d1, $5) + P($10|d1)U(d1, $10) + P($20]d1)U (d1,$20)
(.25)($500) + (.25)($1000) + (.5)($2000)

$1375

E(U|d2)

P($5|d2)U (d2, $5) + P($10[d2)U (d2, $10) + P($20]d2)U (d2, $20)
(.25)($1005) + (.25)($1005) + (.5)($1005)

$1005.
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The wutility of our decision is therefore

EU(D) = max(EU(d1), EU(d2))
= max($1375,$1005) = $1375,

and our decision choice is dl.

Notice in the previous example that the probabilities do not depend on the
decision choice. This is because there is no edge from D to NASDIP. In
general, this is not always the case as the next example illustrates.

Example 5.18 Consider the influence diagram in Figure 5.18, which was de-
veloped in Example 5.12. We have

EU(d) = E(U|d1)
= P($5|d1)U(d1, $5) + P($20]d1)U (d1, $20)
= (.32)($50,000) + (.68)($200,000)
= $152,000

EU(2) = E(U|d2)
= P($5d2)U(d2, $5) + P($20]d2)U (d2, $20)
= (.42)(30) + (.58)($250, 000)
= $145,000

EU(D) = max(EU(dl), EU(d2))
= max($152, 000, $145,000) = $152, 000,

and our decision choice is d1. You may wonder where we obtained the values
of P(85|d1l) and P($5|d2). Once we instantiate the decision node, the chance
nodes comprise a Bayesian network. We then call a Bayesian network inference
algorithm to compute the needed conditional probabilities. For example, that
algorithm would do the following computation:

P($5|d1) = P($5|11,000,d1)P(11,000) + P($5/10,000,d1)P(10,000)
= (.2)(.6) + (.5)(4) = .32.

Henceforth, we will not usually show the computations done by the Bayesian
network inference algorithm. We will only show the results.

Example 5.19 Consider the influence diagram in Figure 5.19, which was de-
veloped in Example 5.13. Since there is an arrow from Test to D, the value
of Test will be known when the decision is made. So we need to determine the
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expected value of U given each value of Test. We have

EU(d1|positive) = FE(U|d1,positive)
= P(good|dl, positive)U(d1, good)
+P(bad|dl, positive)U (d1, bad)
= (.571429)($11,000) + (.428571)($8000)
$9714

EU(d2|positive) = E(U|d2, positive)
= P(good|d2, positive)U(d2, good)
+ P(bad|d2, positive)U (d2, bad)
= (.571429)($10, 000) + (.428571)($10,000)
$10,000

EU(D|positive) = max(FEU (d1|positive), EU(d2]| positive))
—  max($9714, $10, 000) = $10, 000,

and our decision choice is d2. As in the previous example, the needed conditional
probabilities are obtained from a Bayesian network inference algorithm.
It is left as an exercise to compute EU(D| negative).

Example 5.20 Consider the influence diagram in Figure 5.20, which was de-
veloped in Example 5.14. Now we have two decisions, R and D. Since there is
an edge from R to D, decision R is made first and the EU of this decision is
the one we need to compute. We have

EU(r1) = E(U|rl)
P(d1, good|r1)U(rl,d1, good) + P(d1, bad|r1)U(r1,dl, bad)
+P(d2, good|r1)U(rl,d2, good) + P(d2,bad|r1)U(rl, d2, bad)

We need to compute the conditional probabilities in this expression. Since D and
Tran are not dependent on R (Decision R only determines the value of decision
D in the sense that decision D does not take place for some values of R.), we
no longer show r1 to the right of the conditioning bar. We use an inference
algorithm for Bayesian networks to do these computations. For illustration, we
show them:

P(dl,good) = P(dl|lgood)P(good)
= [P(d1]| positive) P(positive |good)
+P(d1] negative) P(negative |good)]| P(good)
[(0)P(positive |good) + (1) P(negative |good)] P(good)
= P(negative |good) P (good)
(.7)(.8) = .56.
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The second equality above is obtained because D and Tran are independent
conditional on Test. The values of P(d1|positive) and P(d1|negative) were
obtained by first computing expected utilities as in FExample 5.19, and then setting
the conditional probability to 1 if the decision choice is the one that maximizes
expected utility and to 0 otherwise. It is left as an exercise to show the other
three probabilities are .02, .24, and .18 respectively. We therefore have
EU(rl) = E(U|rl)
= P(dl,good)U(rl,dl, good) + P(dl,bad)U(rl,dl,bad)
+P(d2, good)U (rl,d2, good) + P(d2,bad)U(r1, d2, bad)

= (.56)($10,800) + (.02)($7800) + (.24)($9800) + (.18)($9800)

= $10320.

It is left as an exercise to show

EU(r2) = $10, 400
EU(r3) = $10, 000.
So
EU(R) = max(EU(rl),EU(r2), EU(r2))

= max($10320,$10, 400, $10,000) = $10, 500,

and our decision choice is r2.

Next we show another method for solving the influence diagram which, al-
though may be less elegant than the previous method, corresponds more to the
way decision trees are solved. In this method, with decision R fized at each of
its choices we solve the resultant influence diagram for decision D, and the we
use these results to solve R.

First fixing R at r1, we solve the influence diagram for D. The steps are
the same as those in Example 5.19. That is, since there is an arrow from Test
to D, the value of Test will be know when the decision is made. So we need to
determine the expected value of U given each value of Test. We have

EU(d1|rl,positive) = E(U|rl,dl, positive)
= P(good| positive)U(r1,d1, good)
+P(bad| positive)U(r1, d1, bad)
= (.571429)(11000) + (.429571)(8000)
= §9522

EU(d2|rl, positive) = E(Ulrl, d2,positive)
= P(good|positive)U(rl, d2, good)
+P(bad| positive)U (rl, d2, bad)
= (.571429)($9800) + (.429571)($9800)
= $9800
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EU(D|rl, positive) max(EU(d1|r1, positive), EU (d2|r1, positive))

= max($9522, $9800) = $9800

EU(dl|rl,negative) = E(U|rl,dl, negative)
= P(good|negative)U(r1,d1, good)
+P(bad| negative)U (r1,d1, bad)
= (.965517)($10,800) + (.034483)($7800)
— $10,697

EU(d2|r1,negative) = FE(U|rl,d2,negative)
= P(good| negative)U(r1, d2, good)
+P(bad| negative)U (r1, d2, bad)
= (.965517)($9800) + (.034483)($9800)
$9800

EU(D|r1,negative) = max(EU(d1|rl,negative), EU(d2|rl, negative))
max($10, 697, $9800) = $10, 697.

As before, the conditional probabilities are obtained from a Bayesian network
inference algorithm. Once we have the expected utilities of D, we can compute
the expected utility of R as follows:

EU(rl) = FEU(D|rl,positive)P(positive) + EU(D|rl, negative) P(negative)
= $9800(.42) + $10, 697(.58)
$10, 320.

Note that this is the same value we obtained using the other method. We next
proceed to compute EU(r2) and EU (r3) in the same way. It is left as an exercise
to do so.

The second method illustrated in the previous example extends readily to an
algorithm for solving influence diagrams. For example, if we had three decisions
nodes D1, Do, and D3 in that order, we would first instantiate D; to its first
decision choice. Then, with Dy instantiated to its first decision choice, we’d
solve the influence diagram for Ds. We’d then compute the expected utility of
Dy’s first decision choice. After doing this for all of Dy’s decision choices, we’d
solve the influence diagram for Dy. We'd then compute the expected utility
of Dq’s first decision choice. This process would be repeated for each of D;’s
decision choices. It is left an exercise to write an algorithm that implements
this method.

The algorithm just illustrated solves the influence diagram by converting it
on the fly to a decision tree. Shachter [1988] describes a way to evaluate an
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influence diagram without transforming it to a decision tree. The method oper-
ates directly on the influence diagram by performing arc reversal /node reduction
operations. These operations successively transform the diagram, ending with a
diagram with only one utility node that holds the utility of the optimal decision.
Shenoy [1992] describes another approach for evaluating influence diagrams.
The influence diagram is converted to a valuation network, and the nodes are
removed from this network by fusing the valuations bearing on the node to be re-
moved. Shenoy’s algorithm is slightly more efficient than Shachter’s algorithm
because it maintains valuations, while Shachter’s algorithm maintains condi-
tional probabilities. Additional operations are required to keep the probability
distributions normalized. Shachter and Ndilikijlikeshav[1993] modified the arc
reversal /node reduction algorithm to avoid these extra operations. The result is
an algorithm which has the same efficiency as Shenoy’s algorithm. Jensen et al
[1994] develop an algorithm which transforms an influence diagram to a junction
tree (See Section 3.4.). The algorithm is a based on the work in [Shenoy, 1992]
and [Jensen et al, 1990].

5.3 Dynamic Networks

After introducing dynamic Bayesian networks, we discuss dynamic influence
diagrams.

5.3.1 Dynamic Bayesian Networks

First we develop the theory; then we give an example.

Formulation of the Theory

Bayesian networks do not model temporal relationships among variables. That
is, a Bayesian network only represents the probabilistic relationships among a set
of variables at some point in time. It does not represent how the value of some
variable may be related to its value and the values of other variables at previous
points in time. In many problems, however, the ability to model temporal
relationships is very important. For example, in medicine it is often important
to represent and reason about time in tasks such as diagnosis, prognosis, and
treatment options. Capturing the dynamic (temporal) aspects of the problem is
also important in artificial intelligence, economics, and biology. Next we discuss
dynamic Bayesian networks, which do model the temporal aspects of a problem.
First we need define a random vector. Given random variables X7,... and
X,,, the column vector
X1
X=| :
Xn
is called a random vector. A random matrix is defined in the same manner.
We use X to denote both a random vector and the set of random variables which
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comprise X. Similarly, we use x to denote both a vector value of X and the set
of values that comprise x. The meaning is clear from the context. Given this
convention and a random vector X with dimension n, P(x) denotes the joint
probability distribution P(z1,...x,). Random vectors are called independent
if the sets of variables that comprise them are independent. A similar definition
holds for conditional independence.

Now we can define a dynamic Bayesian network, which extends the Bayesian
network to model temporal processes. We assume changes occur between dis-
crete time points, which are indexed by the non-negative integers, and we have
some finite number 7" of points in time. Let {X7,... X, } be the set of features
whose values change over time, X; [t] be a random variable representing the
value of X; at time ¢ for 0 <¢ < T, and let

X [t]

For all ¢, each X [t] has the same space which depends on ¢ and we call it the
space of X;. A dynamic Bayesian network is a Bayesian network containing
the variables that comprise the T random vectors X[t], and which is determined
by the following specifications:

1. An initial Bayesian network consisting of a) an initial DAG G containing
the variables in X[0] ; and b) an initial probability distribution Py of these
variables.

2. A transition Bayesian network which is a template consisting of a) a tran-
sition DAG G_, containing the variables in X[t] U X[t 4+ 1]; and b) a
transition probability distribution P_, which assigns a conditional proba-
bility to every value of X[t + 1] given every value X[t]. That is, for every
value x[t + 1] of X[t 4 1] and value x[t] of X[t] we specify

P_ (X[t + 1] = x[t + 1]|X[t] = x[t]).

Since for all ¢ each X; has the same space, the vectors x[t+1] and x[t] each
represent values from the same set of spaces. The index in each indicates
the random variable which has the value. We showed the random variables
above; henceforth we do not.

3. The dynamic Bayesian network containing the variables that comprise the
T random vectors consists of a) the DAG composed of the DAG Gy and
for 0 <t <T —1 the DAG G_ evaluated at ¢; and b) the following joint
probability distribution:

P(x[0],...x[T]) = Py (x[0]) 1:[ P_(x[t + 1]|x[t]). (5.1)
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Figure 5.23: Prior and transition Bayesian networks are in (a). The resultant
dynamic Bayesian network for 7'= 2 is in (b). Note that the probablity distri-
butions are not shown.

Figure 5.23 shows an example. The transition probability distribution en-
tailed by the network in that figure is

n

P (x[t + 1|x[t]) = ] P (@ilt + Llpa; [t + 1]),
i=0

where pa; [t + 1] denotes the values of the parents of X[t + 1]. Note that there
are parents in both X[t] and X[t + 1].
Owing to Equality 5.1, for all ¢ and for all x

P(x[t + 1]|x[0], .. .x[t]) = P(x[t + 1]|x[t]).

That is, all the information needed to predict a world state at time ¢ is contained
in the description of the world at time ¢ — 1. No information about earlier times
is needed. Owing to this feature, we say the process has the Markov property.
Furthermore, the process is stationary. That is, P(x[t 4+ 1]|x[t]) is the same
for all . In general, it is not necessary for a dynamic Bayesian network to have
either of these properties. However, they reduce the complexity of representing
and evaluating the networks, and they are reasonable assumptions in many
applications. The process need not stop at an particular time 7. However, in
practice we reason only about some finite amount of time. Furthermore, we
need a terminal time value to properly specify a Bayesian network.
Probabilistic inference in a dynamic Bayesian network can be done using
the standard algorithms discussed in Chapter 3. However, since the size of a
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@ (b)

Figure 5.24: Prior and transition Bayesian networks, in the case where the net-
works in different time slots are connected only through non-evidence variables,
are in (a). The resultant dynamic Bayesian network for 7' = 2 is in (b).

dynamic Bayesian network can become enormous when the process continues
for a long time, the algorithms can be quite inefficient. There is a special
subclass of dynamic Bayesian networks in which this computation can be done
more efficiently. This subclass includes Bayesian networks in which the networks
in different time steps are connected only through non-evidence variables. An
example of such a network is shown in Figure 5.24. The variables labeled with an
E are the evidence variables and are instantiated in each time step. We lightly
shade nodes representing them. An application which uses such a dynamic
Bayesian network is shown in the next subsection. Presently, we illustrate how
updating can be done effectively in such networks.

Let e[t] be the set of values of the evidence variables at time step ¢ and f[t]
be the set of of values of the evidence variables up to and including time step t¢.
Suppose for each value x[t] of X[t] we know

P(x[t]|f[t])-

We want to now compute P(x([t + 1]|f[t + 1]). First we have
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Figure 5.25: Tessellation of corrider layout.

P(x[t+1If[1]) = > Plxt+1fx[e], f[t) P(x[)If[¢])-

x[t]

= D P(x[t+ 1) P[If[E]). (5-2)
x[t]

Using Bayes’ Theorem, we then have
Px[t+1]|ft+1]) = P(x[t+1]|f[t], e[t +1])
= aP(elt + 1]|x[t + 1], f[t]) P(x[t + 1]|f[¢])
= aP(e[t + 1]|x[t + 1]) P(x[t + 1]|f[t]), (5.3)

where « is a normalizing constant. The value of P(e[t + 1]|x[t + 1]) can be
computed using an inference algorithm for Bayesian networks. We start the
process by computing P(x[0]|f[0]) = P(x[0]e[0]). Then at each time step ¢ + 1
we compute P(x[t + 1]|f[t + 1]) using Equalities 5.2 and 5.3 in sequence. Note
that to update the probability for the current time step we only need values
computed at the previous time step and the evidence at the current time step.
We can throw out all previous time steps, which means we need only keep
enough network structure to represent two time steps.
A simple way to view the process is as follows: We define

P'(x[t + 1)) = P(x[t + 1]|f[t]),

which is the probability distribution of X[t + 1] given the evidence in the first ¢
time steps. We determine this distribution at the beginning of time step t + 1
using Equality 5.2, and then we discard all previous information. Next we obtain
the evidence in the time step ¢ + 1 and update P’ using Equality 5.3.

An Example: Mobile Target Localization

We show an application of dynamic Bayesian networks to mobile target lo-
calization, which was developed by Basye et al [1993]. The mobile target
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Figure 5.26: Sonar readings upon entering a T-junction.

localization problem concerns tracking a target while maintaining knowledge
of one’s own location. Basye et al [1993] developed a world in which a target
and a robot reside. The robot is supplied with a map of the world, which is
divided into corridors and junctions. Figure 5.25 shows a portion of one such
world tessellated according to this scheme. Each rectangle in that figure is a
different region. The state space for the location of the target is the set of all
the regions shown in the figure, and the state space for the location of the robot
is the set of all these regions augmented with four quadrants to represent the
directions the robot can face. Let Lr and L4 be random variables whose values
are the locations of the robot and the target respectively.

Both the target and the robot are mobile, and the robot has sensors it uses
to maintain knowledge of its own location and to track the target’s location.
Specifically, the robot has a sonar ring consisting of 8 sonar transducers, config-
ured in pairs pointing forward, backward, and to each side of the robot. Each
sonar gives a reading between 30 and 6000 millimeters, where 6000 means 6000
or more. Figure 5.26 shows one set of readings obtained from the sonars on
entering a T-junction. We want the sensors to tell us what kind of region we
are in. So we need a mapping from the raw sensor data to an abstract sensor
space consisting of the following: corridor, T-junction, L-junction, dead-end,
open space, and crossing. This mapping could be deterministic or probabilistic.
Basye et al [1993] discuss methods for developing it. Sonar data is notoriously
noisy and difficult to disambiguate. A sonar which happens to be pointed at an
angle of greater than 70 degrees to a wall, will likely not see that wall at all. So
we will assume the relationship is probabilistic. The robot also has a forward
pointing camera to identify the presence of its target. The camera can detect
the presence of a blob identified to be the target. If it does not detect a suitable
blob, this evidence is reported. If it does find a suitable blob, the size of the blob
is used to estimate its distance from the robot, which is reported in rather gross
units, i.e. within 1 meter, between 2 and 3 meters, etc. The detection of a blob
at a given distance is only probabilistically dependent on the actual presence of
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Figure 5.27: The prior and transition Bayesian networks for the mobile target
mobilization problem are (a). The resultant dynamic Bayesian network for
T =2isin (b).

the target at that distance. Let Er be a random variable whose value is the
sonar reading, which tells the robot something about its own location, and F 4
be a random variable whose value is the camera reading, which tells the robot
something about the target’s location relative to the robot. It follows from the
previous discussion that Epr is probabilistically dependent on Lr, and E4 is
probabilistically dependent on both Li and L4. At each time step, the robot
obtains readings from its sonar ring and camera. For example, it may obtain
the sonar readings in Figure 5.26, and its camera may inform it that the target
is visible at a certain distance.

The actions available to the robot and the target are as follows: travel down
the corridor the length of one region, turn left around the corner, turn around,
etc. In the dynamic Bayesian network model, these actions are simply performed
in some pre-programmed probabilistic way, which is not related to the sensor
data. So the location of the robot at time ¢ + 1 is a probabilistic function of
its location at time ¢. When we model the problem with a dynamic influence
diagram in the Section 5.3.2, the robot will decide on its action based on the
sensor data. The target’s movement could be determined by a person or also
pre-programmed probabilistically.

In summary, the random variables in the problem are as follows:
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Variable | What the Variable Represents
Lgr Location of the robot
Ly Location of the target
Er Sensor reading regarding location of robot
FEa Camera reading regarding location of target relative to robot

Figure 5.27 shows a dynamic Bayesian network which models this problem
(without showing any actual probability distributions). The prior probabilities
in the prior network represent information initially known about the location
of the robot and the target. The conditional probabilities in the transition
Bayesian network can be obtained from data. For example, P(eallg,l4) can
obtained by repeatedly putting the robot and the target in positions g and [4
respectively, and seeing how often reading e, is obtained.

Note that although the robot can sometimes view the target, the robot makes
no effort to track. That is, the robot moves probabilistically according to some
scheme. Our goal is for the robot to track the target. However, to do this
it must decide on where to move next based on the sensor data and camera
reading. As mentioned above, we need dynamic influences diagrams to produce
such a robot. They are discussed next.

5.3.2 Dynamic Influence Diagrams

Again we first develop the theory, and then we give an example.

Formulation of the Theory

To create a dynamic influence diagram from a dynamic Bayesian network we
need only add decision nodes and a value node. Figure 5.28 shows the high level
structure of such a network for T" = 2. The chance node at each time step in that
figure represent the entire DAG at that time step, and so the edges represent
sets of edges. There is a edge from the decision node at time t to the chance
nodes at time ¢t + 1 because the decision made at time ¢ can affect the state
of the system at time t + 1. The problem is to determine the decision at each
time step which maximizes expected utility at some point in the future. Figure
5.28 represents the situation where we are determining the decision at time 0
which maximizes expected utility at time 2, The final utility, could in general,
be based on the earlier chance nodes and even the decision nodes. However, we
do not show such edges to simplify the diagram. Furthermore, the final expected
utility is often a weighted sum of expected utilities independently computed for
each time step up to the point in the future we are considering. Such a utility
function is called time-separable.

In general, dynamic influence diagrams can be solved using the algorithm
presented in Section 5.2.2. The next section contains an example.
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Figure 5.28: The high level structure of a dynamic influence diagram.

An Example: Mobile Target Localization Revisited

After we present the model, we show some results concerning a robot constructed
according to the model.

The Model Recall the robot discussed in Section 5.3.1. Our goal is for the
robot to track the target by deciding on its move at time ¢ based on its evidence
at time ¢. So now we allow the robot to make a decision D[t] at time ¢ as to
which action it will take, where the value of D[t] is a result of maximizing some
expected utility function based on the evidence in time step t. We assume there
is error in the robot’s movement. So the location of the robot at time t + 1 is
a probabilistic function of its location at the previous time step and the action
taken. The conditional probability distribution of Lg is obtained from data as
discussed discussed at the end of Section5.3.1 That is, we repeatedly place the
robot in a location, perform an action, and then observe its new location.

The dynamic influence diagram, which represents the decision at time ¢ and
in which the robot is looking three time steps into the future, is shown in Figure
5.29. Note that there are crosses through the evidence variable at time t to
indicate their values are already known. We need to maximize expected utility
using the probability distribution conditional on these values and the values of
all previous evidence variables. Recall at the end of Section 5.3.1 we called this
probability distribution P’ and we discussed how it can be obtained. First we
need define a utility function. Suppose we decide to determine the decision at
time ¢ by looking M time steps into the future. Let

dar = {d[t] [t +1],...d[t + M — 1]}
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D[t] D[t+1] D[t+2]

Figure 5.29: The dynamic influence diagram modeling the robot’s decision as
to which action to take at time ¢.

be a set of values of the next M decisions including the current one and
fu = {eR[tJr 1],€A[t + 1], eR[tJr 2],€A[t + 2], .. .eR[tJr M], eA[tJr M]}

be a set of values of the evidence variables observed after the decisions are made.
For 1 < k < M let dj, and fj, respectively be the first k decisions and evidence
pairs in each of these sets. Define

Up(fr,dp.) = — rrEnZdist(u, V)P (Lalt + k] = v)|f, di), (5.4)

where dist is the Euclidean distance, the sum is over all values v in the space of
L 4, and the minimum is over all values u in the space of L. Recall from the
beginning of Section 5.3.1 that the robot is supplied with a map of the world.
It uses this map to find every element in the space of L 4. The idea is that if we
make these decisions and obtain these observations at time ¢ 4 k, the sum in
Equality 5.4 is the expected value of the distance between the target and a given
location u. The smaller this expected value is the more likely it is the target is
close to u. The location % which has the minimum expected value is then our
best guess at where the target is if we make these decisions and obtain these
observations. So the utility of the decisions and the observations is the expected
value for @. The minus sign occurs because we maximize expected utility.
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We then have
EU(di) = > Us(fi, di) P'(fi|d). (5.5)
fi

This expected utility only concerns the situation k time steps into the future.
To take into account all time steps up to and including time ¢t + M, we use a
utility function which is a weighted sum of the utilities at each time step. We

then have
M

EU(dw) =7 EUk(dk), (5:6)
k=1

where 7, decreases with k to discount the impact of future consequences. Note
that implicitly ~, = 0 for £ > M. Note further that we have a time-separable
utility function. We choose the decision sequence which maximizes this expected
utility in Equality 5.6, and we then make the first decision in this sequence at
time step t.

In summary, the process proceeds as follows: In time step ¢ the robot updates
its probability distribution based on the evidence (sensor and camera readings)
obtained in that step. Then the expected utility of a sequence of decisions
(actions) is evaluated. This is repeated for other decision sequences, and the
one that maximizes expected utility is chosen. The first decision (action) in
that sequence is executed, the sensor and camera readings in time step ¢t + 1 is
obtained, and the process repeats.

The computation of P’(fy|d;) in Equality 5.5 for all values of f can be quite
expensive. Dean and Wellman [1991] discuss ways to reduce the complexity of
the decision evaluation.

Result: Emergent Behavior Basye et al [1993] developed a robot using
the model just described, and they observed some interesting, unanticipated
emergent behavior. By emergent behavior we mean behavior that is not
purposefully programmed into the robot, but that emerges as a consequence of
the model. For example, when the target moves towards a fork, the robot stays
close behind it, since this will enable it to determine which branch the target
takes. However, when the target moves towards a cul-de-sac, the robot keeps
fairly far away, whereas Basye et al [1993] expected it to remain close behind.
Analyzing the probability distributions and results of the value function, they
discovered that the model allows for the possibility that the target might slip
behind the robot, leaving the robot unable to determine the location of the target
without additional actions. If the robot stays some distance away, regardless of
what action the target takes, the observations made by the robot are sufficient
to determine the target’s location. Figure 5.30 illustrates the situation. In time
step t the robot is close to the target as the target is about to enter the cul-de-
sac. If the robot stays close as illustrated by the top path, in time step t + 1 it
is just as likely that the target will slip behind the robot as it is that the target
will move up the cul-de-sac. If the target does slip behind the robot, it will no
longer be visible. However, if the robot backs off, as illustrated by the bottom
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t t+1
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® O

Figure 5.30: Staying close to the target may not be optimal.

path, the robot will be able determine the location of the target regardless of
what the target does. When considering its possible observations in time step
t + 1, the observation ‘target not visible’ would not give the robot a good idea
as to the target’s location. So the move to stay put is less valued than the move
to back off.

Larger-Scale Systems The method used to control our robot could be ap-
plied to a more complex system. Consider the following example taken from
[Russell and Norvig, 1995]. An autonomous vehicle uses a vision-based lane-
position sensor to keep it in the center of its lane. The position sensor’s accu-
racy is directly affected by rain and an uneven road surface. Furthermore, both
rain and a bumpy road could cause the position sensor to fail. Sensor failure
of course affects the sensor’s accuracy. Two time steps in a dynamic influence
diagram, which models this situation, appears in Figure 5.31.
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Figure 5.31: Two time steps in a dynamic influence diagram, which models the
decision faced by an autonomous vehicle.
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Figure 5.32: A decision tree.

Other Applications

Applications of dynamic Bayesian networks and influence diagrams include plan-
ning under uncertainty (e.g. our robot) [Dean and Wellman, 1991], analysis of
freeway traffic using computer vision [Huang et al, 1994], modeling the step-
ping patterns of the elderly to diagnose falls [Nicholson, 1996], and audio-visual
speech recognition [Nefian et al, 2002].

EXERCISES

Section 5.1

Exercise 5.1 Solve the decision tree in Figure 5.32.
Exercise 5.2 Solve the decision tree in Figure 5.33.

Exercise 5.3 Show the solved decision tree given the decision tree in Figure
5.38.

Exercise 5.4 Show that if we use R = 1000 in Example 5.3 the decision will
be to buy NASDIP.
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Figure 5.33: A decision tree with two decisions.

Exercise 5.5 Compute the conditional probabilities in the tree in Figure 5.8
from the conditional probabilities given in Example 5.5.

Exercise 5.6 Show EU(D;) = $9820 and EU(Ds) = $10,697 for the decision
tree in Figure 5.10.

Exercise 5.7 Consider Example 5.7. Suppose Leonardo has the opportunity
to consult the weather forecast before deciding on whether to take his umbrella.
Suppose further that the weather forecast says it will rain on 90% of the days it
actually does rain, and 20% of the time it says it will rain on days it does not
rain. That is,

P(Forecast = rain|R = rain) = .9
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P(Forecast = rain|R = no rain) = .2.

As before, suppose Leonardo judges that
P(R = rain) = 4.

Show the decision tree representing this problem instance assuming the utilities
in Example 5.7. Solve that decision tree.

Exercise 5.8 Consider again Example 5.7. Assume if it rains, there is a .7
probability the suit will only need to go to the cleaners, and a .3 probability it
will rain. Assume again

P(R = rain) = 4.

Assess your own utilities for this situation, show the resultant decision tree, and
solve that tree.

Exercise 5.9 Consider Example 5.9. Assume your life expectancy from birth is
75 years. Assess your own QALE’s for the situation described in that example,
show the resultant decision tree, and solve that tree.

Exercise 5.10 Suppose Jennifer is a young, potential capitalist with $1000 to
invest. She has heard glorious tales of many who have made fortunes in the
stock market. So she decides to do one of three things with her $1000. She
could buy an option on Techjunk which would allow her to buy 1000 shares of
Techjunk for $22 a share in one month. She could use the $1000 to buy shares of
Techjunk. Finally, she could leave the $1000 in the bank earning .07% annually.
Currently, Techjunk is selling for $20 a share. Suppose further she feels there is
a .5 chance the NASDAQ will be at 1500 in two months and a .5 chance it will
be at 2000. If it s at 1500, she feels there is a .3 chance Techjunk will be at $23
a share and a .7 chance it will be at $15 a share. If the NASDAQ is at 2000,
she feels there is a .7 chance Techjunk will be at $26 a share and a .3 chance it
will be $20 a share. Show a decision tree that represents this decision and solve
that decision tree.

Let PINASDAQR = 3000) = p and P(NASDAQ = 4000) = 1 — p. Deter-
mine the maximal value of p for which the decision would be to buy the option.
Is there any value of p for which the decision would be to buy the stock?

Exercise 5.11 This exercise is based on an example in [Clemen, 1996]. In
1984, Penzoil and Getty Oil agreed to a merger. However, before the deal was
closed, Texaco offered Getty a better price. So Gordon Getty backed out of the
Penzoil deal and sold to Texaco. Penzoil immediately sued, won the case, and
was awarded $11.1 billion. A court order reduced the judgment to $2 billion, but
interest and penalties drove the total back up to $10.3 billion. James Kinnear,
Texaco’s chief executive office, said he would fight the case all the way up to the
U.S. Supreme Court because, he argued, Penzoil had not followed Security and
Ezxchange Commission regqulations when negotiating with Getty. In 1987, just
before Penzoil was to begin filing liens against Texaco, Texaco offered to give
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Penzoil $2 billion to settle the entire case. Hugh Liedke, chairman of Penzoil,
indicated that his advisors told him a settlement between $3 billion and $5 billion
would be fair.

What should Liedke do? Two obvious choices are 1) he could accept the
$2 billion; and 2) he could turn it down. Let’s say that he is also considering
counteroffering $5 billion. If he does, he judges that Texaco will either accept
the counteroffer with probability .17, refuse the counteroffer with probability .5,
or counter back in the amount of $3 billion with probability .33. If Texaco does
counter back, Liedke will then have the decision as to whether to refuse or accept
the counteroffer. Liedke assumes that if he simply turns down the $2 billion
with no counteroffer, or if Texaco refuses his counteroffer, or if he refuses their
return counteroffer, the matter will end up in court. If it does go to court,
he judges that there is .2 probability Penzoil will be awarded $10.3 billion, a
.5 probability they will be awarded $5 billion, and a .3 probability they will get
nothing.

Show a decision tree that represents this decision, and solve that tree.

What finally happened? Liedke simply refused the $2 billion. Just before
Penzoil began to file liens on Texaco’s assets, Texaco filed for protection from
creditors under Chapter 11 of the federal bankruptcy code. Penzoil then submit-
ted a financial reorganization plan on Texaco’s behalf. Under the plan, Penzoil
would receive about $4.1 billion. Finally, the two companies agreed on $3 billion
as part of Texaco’s financial reorganization.

Section 5.2

Exercise 5.12 Solve the influence diagram in Figure 5.17, which was developed
i Example 5.11.

Exercise 5.13 Represent the problem instance in Exercise 5.7 with an influence
diagram. Solve that influence diagram.

Exercise 5.14 Represent the problem instance in Exercise 5.8 with an influence
diagram. Solve that influence diagram.

Exercise 5.15 Represent the problem instance in Exercise 5.10 with an influ-
ence diagram. Solve that influence diagram.

Exercise 5.16 Represent the problem instance in Exercise 5.11 with an influ-
ence diagram. Solve that influence diagram.

Section 5.3
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Exercise 5.17 Assign parameter values to the dynamic Bayesian network in
Figure 5.27, and compute the conditional probability of the locations of the robot
and the target at time 1 given certain evidence at times 0 and 1.

Exercise 5.18 Assign parameter values to the dynamic influence diagram in
Figure 5.29, and determine the decision at time 0 based on certain evidence at
time 0 and by looking 1 time into the future.
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Chapter 6

Parameter Learning:
Binary Variables

Initially the DAG in a Bayesian network was hand-constructed by a domain
expert. Then the conditional probabilities were assessed by the expert, learned
from data, or obtained using a combination of both techniques. For example
the DAGs in the Bayesian networks in Figures 1.11 and 3.1 were both hand-
constructed. However, the conditional probabilities in the Bayesian network in
Figure 3.1 were learned from data. Eliciting Bayesian networks from experts
can be a laborious and difficult procedure in the case of large networks. So re-
searchers developed methods that could learn the DAG from data; furthermore,
they formalized methods for learning the conditional probabilities from data.
We present these methods in the chapters that follow. In a Bayesian network
the DAG is called the structure and the values in the conditional probabil-
ity distributions are called the parameters. In this chapter and the next, we
address the problem of learning the parameter values from data. This chap-
ter assumes each random variable has a space of size 2 (i.e. the variables are
binary.), while Chapter 7 concerns multinomial and continuous variables. Chap-
ters 8-11 discuss learning the structure from data. Chapters 8 and 9 present a
Bayesian method for learning structure, while Chapter 10 presents an alterna-
tive method called constraint-based. Furthermore, in that chapter we show how
causal influences can be learned from data. Chapter 11 compares the methods
and presents several examples of learning both Bayesian networks and causal
influences.

We can only learn parameter values from data when the probabilities are
relative frequencies, which were discussed briefly in Section 1.1.1 and in more
detail in Section 4.2.1. Recall from this latter section that we often used the
term relative frequency rather than the term probability to refer to a propen-
sity. That is the terminology used in this chapter. The word probability will
ordinarily refer to a subjective probability (degree of belief) as discussed in
Example 1.3. We will represent our belief concerning the value of a relative

293
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frequency using a subjective probability distribution.

This chapter proceeds as follows: In Section 6.1 we discuss learning a single
parameter, which means we obtain an estimate of a single relative frequency.
Section 6.2 further discusses the Beta density function, which is introduced in
Section 6.1. Section 6.3 shows how to compute a probability interval for a
relative frequency, which enables us to express our confidence in its estimate.
Section 6.4 addresses the problem of learning all the parameters in a Bayesian
network. Learning parameters in the case of missing data items is covered in
Section 6.5. Finally, Section 6.6 shows a method for determining the variance
in the probability distribution of an inferred relative frequency in a Bayesian
network from the probability distributions of the parameters specified in the
network.

6.1 Learning a Single Parameter

After discussing subjective probability distributions of relative frequencies, we
develop a method for estimating a relative frequency from data.

6.1.1 Probability Distributions of Relative Frequencies

First we discuss developing a probability distribution of a relative frequency
when all number in [0,1] are considered equally likely to be the relative fre-
quency. Then we introduce a family of density functions which can be used to
represent an instance in which we do not feel all numbers in [0, 1] are equally
likely to be the relative frequency. Finally, we present the general method for
representing belief concerning a relative frequency using a subjective probability
distribution.

All Relative Frequencies Equally Probable

We present an urn example illustrating a probability distribution of a relative
frequency when all number in [0, 1] are equally likely to be the relative frequency,
First we discuss the case where the number of possible relative frequencies are
discrete; then we address the continuous case.

The Discrete Case Suppose we have 101 coins in a urn, each with a different
propensity for landing heads. The propensity for the first coin is .00, for the
second it is .01, for the third it is .02,... and for the last it is 1.00. This situation
is depicted in Figure 6.1. This means, if we tossed, for example, the second coin
many times, the relative frequency with which it landed heads would approach
.01. Suppose next that I pick a coin at random from the urn and I am about
to toss it. What probability should I assign to it landing heads? T think most
would agree that, if we knew the relative frequency with which the coin landed
heads, our probability of it landing heads would be that relative frequency. For
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Figure 6.1: An urn containing 101 coins, each with a different propensity for
landing heads.

example, if we knew we were tossing the second coin, our probability! would
be .01 because this is the relative frequency with which the second coin lands
heads. Let Side be a random variable whose values are the outcomes of the
toss, namely heads and tails, and F' be a random variable whose range consists
of the 101 values of the relative frequencies.

P(Side = heads|f) = f.

Note that we used f to denote F' = f, but we did not use shorthand notation for
Side = heads. This is consistent with the policy discussed in Section 1.1.4. If we
use the principle of indifference (See Section 1.1.1) to assign equal probabilities
to all relative frequencies (coins), we can represent our probability distribution
by the Bayesian network in Figure 6.2. Such a Bayesian network is called an
augmented Bayesian network because it includes a node representing our
belief about a relative frequency. Note that we shade that node. ‘Augmented
Bayesian network’ is formally defined in Section 6.4.2.We have then that

1.00
P(Side = heads) = Y P(Side = heads|f)P(f)
f=.00

51 (i)

, 101

f=.00

B 1 %f* 1 100 x 101 1
- 100 x 101 ~ \ 100 x 101 2 2

F=0

It is not surprising that the probability turns out to be .5 since the relative

IHenceforth, I will simply refer to probabilities as ‘our probablity’, meaning only my belief.
It is simplest to state things that way. No one is compelled to agree.
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P(f)=1/101 .00 # f #1.00

P(Side = heads| f) = f

Figure 6.2: A Bayesian network representing our belief concerning tossing a coin
picked at random from the urn in Figure 6.1

frequencies are distributed evenly on both sides of .5. What is this probability
value of .57 It is unlikely that it is the relative frequency with which the sampled
coin will land heads as that would be the case only if we picked the coin with
a propensity of .5. Rather it is our subjective probability (degree of belief) of
the coin landing heads on the first toss just as .6 was our subjective probability
of whether the Bulls won (discussed in Section 4.2.1). Similar to how we would
be indifferent between receiving a small prize if the Bulls won and receiving the
same small prize if a white ball was drawn from an urn containing 60% white
balls, we would be indifferent between receiving a small prize if the coin landed
heads and receiving the same small prize if a white ball was drawn from an urn
containing 50% white balls. Note that the value .5 is also the relative frequency
with which heads will occur if we repeatedly sample coins with replacement and
toss each sampled coin once.

The Continuous Case Suppose now that there is a continuum of coins in
the urn, for every real number f between 0 and 1 there is exactly one coin
with a propensity of f for landing heads, and we again pick a coin at random.
Then our probability distribution of the random variable, whose values are the
relative frequencies with which the coins land heads, is given by the uniform
density function. That is,

p(f)=1.
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Figure 6.3: The uniform density function.

This density function is shown in Figure 6.3. In this case, our probability of
landing heads on the first toss is given by

P(Side = heads) = /1 P(Side = heads|f)p(f)df
0

! 1
= [ rwa=3

Again, this result is not surprising.

Now consider some repeatable experiment such as the tossing of a thumbtack,
or sampling dogs and determining whether or not they eat the potato chips
which I offer them (I choose this example because I have no idea whether a
particular dog would eat potato chips.). If we feel all numbers in [0,1] are
equally likely to be the value of the relative frequency, then we can model our
belief concerning the relative frequency using the uniform density function, just
as we did in the case of the coins in the urns.

All Relative Frequencies Not Equally Probable

In many, if not most, cases we do not feel all numbers in [0, 1] are equally likely
to be the value of a relative frequency. Even in the case of tossing a thumbtack,
I would not feel extreme values as probable as ones nearer the middle. More
notably, if I tossed a coin from my pocket, I would think it most probable that
the relative frequency is around .5. In this case, I would want a density function
similar to the one in Figure 6.4. If I sampled individuals in the United States and
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Figure 6.4: The beta(f;50,50) density function.

determined whether they brushed their teeth, I would think it most probably
the relative frequency is around .9. In this case, I would want a density function
like the one in Figure 6.5. Next we develop such density functions. Namely,
we discuss a family of density functions called the beta density functions, which
provide a natural way for quantifying prior beliefs about relative frequencies
and updating these beliefs in the light of evidence.

Before proceeding, we need review the gamma function, which is defined
as follows:

F(a:):/ t*~le~tdt.
0

The integral on the right converges if and only if z > 0. If x is an integer > 1,
it is possible to show

I(z) = (x— 1)L

So the gamma function is a generalization of the factorial function. The follow-
ing lemma concerns the gamma function:

Lemma 6.1 We have
I(x+1)
Tx)

Proof. The proof is left as an exercise.

Now we can define the beta density function.
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Figure 6.5: The beta(f;18,2) density function.
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Figure 6.6: The beta(f;3,3) density function.
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Definition 6.1 The beta density function with parameters a, b, N = a + b,
where a and b are real numbers > 0, is

L(N)  aa b-1
=———f""(1— 0< <1
A random wvariable F, that has this density function, is said to have a beta
distribution.
We refer to the beta density function as beta(f;a,b).

The uniform density function in Figure 6.3 is beta(f;1,1). Figures 6.4, 6.5,
and 6.6 show other beta density functions. Notice that the larger the values of
a and b, the more the mass is concentrated around a/(a+b). For this and other
reasons, when a and b are integers, we often say the values of a and b are such
that the probability assessor’s experience is equivalent to having seen the first
outcome occur a times in a + b trials. The results in Section 6.1.2 give further
justification for this statement.

We will need the following two lemmas concerning the beta density function:

Lemma 6.2 If a and b are real numbers > 0 then

(a+1DT(b+1)
F(a+b+2)

1
r
| = prar=
0
Proof. The proof is left as an exercise.

Lemma 6.3 If F' has a beta distribution with parameters a,b, N = a + b, then

Proof. We have

E(F)

[
&ﬁ
=
=
&

L(N) [ b1
T ) /o fr=f)df
~ I(N) T(a+1)T(b)
 T(@T®)T(a+b-1+2)
~ I(N) T(a+1I(b)
" T(a)L(b) T(N+1)
a
= 5

The fourth equality above is due to Lemma 6.2 and the last is due to Lemma
6.1.
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A(f)

PX=1F=f)=f

Figure 6.7: The probability distribution of F' represents our belief concerning
the relative frequency with which X equals 1.

Representing Belief Concerning a Relative Frequency

Next we formalize and generalize the notions introduced in Section 6.1.1. Sup-
pose we have some two-outcome random process such as the tossing of a thumb-
tack, and we let X be a random variable whose values, 1 and 2, are the outcomes
of the experiment?. We assume we can represent our belief concerning the rel-
ative frequency with which X equals 1 using a random variable I’ whose space
consists of numbers in the interval [0,1]*. The expected value E(F) is defined
to be our estimate of the relative frequency. We further assume our beliefs
are such that

P(X =1|f) = f. (6.1)

That is, if we knew for a fact that the relative frequency with which X equals
1 was f, our belief concerning the occurrence of 1 in the first execution of the
experiment would be f. This situation is represented by the Bayesian network
in Figure 6.7. Given this assumption, the theorem that follows shows that our
subjective probability for the first trial is the same as our estimate of the relative
frequency.

Theorem 6.1 Suppose X is a random variable with two values 1 and 2, F is
another random variable such that

P(X =1/f) = f.

2Recall in previous chapters we ordinarily used 1 and z2 as the values of variable X when
we do not use names that have semantic connotations. For the sake of notational simplicity,
in this chapter we simply use 1 and 2 as the values of all variables.

31t is somewhat standard to use theta () for a random variable whose value is a relative
frequency. However, owing to the similarity of capital and small theta, we find it more lucid
to use F' for relative frequency.
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Then
P(X =1)=E(F),

where E stands for expected value.
Proof. We prove the case where F' is continuous. Owing to the law of total
probability,

P(X=1) = / P(X = 1|/)o(f)df

/0 Folf)df
— E(F).

Corollary 6.1 If the conditions in Theorem 6.1 hold, and F' has a beta distri-
bution with parameters a,b, N = a + b, then

Proof. The proof follows immediately from Theorem 6.1 and Lemma 6.3.

Example 6.1 Suppose I am going to repeatedly toss a coin from my pocket.
Since I would feel it highly probable that the relative frequency is around .5,
1 might feel my prior experience is equivalent to having seen 50 heads in 100
tosses. Therefore, I could represent my belief concerning the relative frequency
with the beta(f;50,50) density function, which is shown in Figure 6.4. Due to
the previous corollary, for the first toss of the coin,

20

P(Side = heads) = 50150 5.

Furthermore, .5 is our estimate of the relative frequency with which the coin will
land heads.

Example 6.2 Suppose I am going to repeatedly toss a thumbtack. Based on
its structure, I might feel it should land heads about half the time, but I would
not be nearly so confident as I would with the coin from my pocket. So I might
feel my prior experience is equivalent to having seen 3 heads (landing on its flat
side) in 6 tosses, which means I could represent my belief concerning the relative
frequency with the beta(f;3,3) density function, which is shown in Figure 6.6.
Due to the previous corollary, for the first toss of the thumbtack,

P(Side = heads) = ?33 =.5.

Furthermore, .9 is our estimate of the relative frequency of individuals who brush
their teeth.
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Example 6.3 Suppose I am going to sample individuals in the United States
and determine whether they brush their teeth. In this case, I might feel my prior
experience is equivalent to having seen 18 individuals brush their teeth out of 20
sampled. Therefore, I could represent my belief concerning the relative frequency
with the beta(f;18,2) density function, which is shown in Figure 6.5. Due to
the previous corollary, for the first individual sampled,
P(Teeth = brushed 18
(Teeth = brushe )718+27' .

Furthermore, .9 is our estimate of the relative frequency of individuals who brush
their teeth.

6.1.2 Learning a Relative Frequency

Recall the coins in the urn in Figure 6.1. We determined that, if we picked
a coin at random and tossed it, our probability of landing heads on that toss
would be .5. Suppose now that we’ve tossed it 20 times and it landed heads 18
times. Would we still assign a probability of .5 to the next toss? We would not
because we would now feel it more probable that the coin is one of the coins
with propensity around .9 than we would that it is one of the coins with a small
propensity. Next we discuss how to quantify such a change in belief.

Suppose we perform M trials of a random process. Let X be a random
variable whose value is the outcome of the hAth trial, and let F' be a random
variable whose probability distribution represents our belief concerning the rel-
ative frequency. We assume that if we knew the value of I’ for certain, then
we would feel the X ")s are mutually independent, and our probability for each
trial would be that relative frequency. That is, if, for example, we were tossing
a coin whose propensity we knew to be .5, then our probability for the hth toss
would be .5 regardless of the outcomes of the first A — 1 tosses.

Why should we make the assumption in the previous paragraph? First, there
is evidence that separate trials are independent as far as the actual relative
frequencies are concerned. That is, as discussed in Section 4.2.1, in 1946 J.E.
Kerrich conducted many experiments indicating the relative frequency appears
to approach a limit; in 1971 G.R. Iversen et al ran many experiments with
dice indicating that what we call random processes do indeed generate random
sequences; and in 1928 R. von Mises proved that separate trials are independent
if we assume the relative frequency approaches a limit and a random sequence
is generated.

You may argue that, even though there is evidence that separate trials are
independent as far as the actual relative frequencies are concerned, we are not
compelled to say that, given we know the relative frequencies, they are indepen-
dent as far as our beliefs are concerned. This may be true. However, Bruno de
Finetti showed that if we make certain minimal assumptions about our beliefs,
then we must believe they are independent given some random variable. He
assumes exchangeability, which means an individual assigns the same proba-
bility to all sequences of the same length containing the same number of each
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A(f)

PX®W=1]f)=f P(X@=1|f) =f PXM=1]f)=f

Figure 6.8: A Bayesian network representing the fact that the X (s are inde-
pendent conditional on F.

outcome. For example, if we denote a heads by a 1 and a tails by 2, the indi-
vidual assigns the same probability to these two sequences:

1212121222 and 1221122212.

Furthermore, this same probability is assigned to all other sequences of length
ten that have precisely four 1’s and six 0’s. De Finetti’s assumption of exchange-
ability is similar to von Mises’ assumption that the sequence of outcomes is a
random sequence (See Section 4.2.1.). However, exchangeability has to do with
an individual’s beliefs, whereas randomness has to do with an objective prop-
erty of nature. Exchangeability could serve as a Bayesian definition of ‘random
process’. That is, a repeatable experiment is considered a random process
by an individual if the individual’s beliefs (probabilities) concerning sequences
of outcomes of the experiment satisfy exchangeability. Given the assumption
of exchangeability, in 1937 B. de Finetti proved there must be some random
variable that renders the individual’s beliefs concerning the trials independent.
These matters are discussed more in [Good, 1965].

Given all of the above, we will assume the X s are mutually independent
conditional on the value of the relative frequency. This independence is repre-
sented by the Bayesian network in Figure 6.8.

Next we give formal definitions concerning the notion just developed.

Definition 6.2 Suppose

1. We have a set of random variables (or random vectors) D = {X(l), xX@
XY such that each XM has the same space;
2. There is a random variable F with density function p such that the XM s

are mutually independent conditional on F, and for all values f of F, all
X ) have the same probability distribution conditional on f.
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Then D is called a sample of size M with parameter F.

Given a sample, the density function p is called the prior density func-
tion of the parameters relative to the sample. It represents our prior belief
concerning the unknown parameters. Given a sample, the marginal distribution
of each X" is the same. This distribution is called the prior distribution
relative to the sample. It represents our prior belief concerning each trial.

In general, F is a set containing more than one element, at least one of which
is a random variable. Furthermore, the members of D may be random vectors.
Such a case is discussed in Section 6.4.3 (Rrandom vectors were defined Section
5.3.1.). However, in the case of binomial samples, which are discussed next, F
contains only one element and the members of D are random variables.

Definition 6.3 Suppose we have a sample of size M such that
1. each X" has space {1,2};
2. F=A{F}, F has space [0,1], and for 1 <h < M
P(x™ =1jf)=f. (6.2)

Then D is called a binomial sample of size M with parameter F.

Example 6.4 Suppose we sample a coin from the urn in Figure 6.1 and toss it
twice. Let 1 be the outcome if a heads occurs, 2 be the outcome if a tails occurs,
and X" s value be the outcome of the hth toss. Clearly, the density function
for F is beta(f;1,1). So D = {XM X} is a binomial sample of size 2 with
parameter F'. Owing to Theorem 6.1 and Corollary 6.1, the prior distribution
relative to the sample is

1 1

‘HMM:U:EWPj:T:Q

Example 6.5 Suppose we toss a thumbtack 10 times. Let 1 be the outcome if a
heads occurs, 2 be the outcome if a tails occurs, and X ™ ’s value be the outcome
of the hth toss. Furthermore, let the density function for F' be beta(f;3,3). So
D= {XW x®  XU0Y js a binomial sample of size 10 with parameter F.
Owing to Theorem 6.1 and Corollary 6.1, the prior distribution relative to the

sample s
3 1
P(X"M =1)=FE(F) =" =-.
3+3 2
Before developing theory that enables us to update our belief about the next
trial from a binomial sample, we present two more lemmas concerning the beta
distribution.

Lemma 6.4 Suppose F' has a beta distribution with parameters a,b, N = a+Db,
s and t are two integers > 0, and M = s +t. Then

I'(N) T(a+s)I'(b+1)
(N + M) I'(a)L(b) ’

E(F*[l-F)') =
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Proof. We have

B (P~ FY)

I
&ﬁ
)
—
|
)
-y
)
&

0
_ ! s(1 _ £\t F(N) a—1¢1 _ b—1
= [ ra- D -0

1

fa+s—1(1 - f)b+t—1df

)
(
I'(N) T(a+s)'(b+1t)
I@)T(b) T'(a+s+b+1)
I'(N) T(a+s)'(b+1)
DN+ M) T(a)(b)

The fourth equality above is due to Lemma 6.2.

Lemma 6.5 Suppose F' has a beta distribution with parameters a,b, N = a+Db,
and s and t are two integers > 0. Then

= 1)'p(f)

BCF L — FI1) = beta(f;a+ s,b+1t).

Proof. Let M =s+t. We have

0= felf) 51— f)t%%fa_l(l — -t

E(Fs[l _ F]t) - I'(N) TI(a+s)I(b+t)
T(N+M)  T(a)D(b)
I'(N + M) el bt
- "7/  faTs 1— +t—1
F(a+s)F(b+t)f (=7

= beta(f;a+s,b+1t).

The first equality above is due Lemma 6.4.

We now obtain results enabling us to update our belief from a binomial
sample.

Theorem 6.2 Suppose
1. D is a binomial sample of size M with parameter F';
2. we have a set of values
d={zW 2@ 20Dy
of the variables in D (The set d is called our data set (or simply data).);
3. s is the number of variables in d equal to 1;

4. t is the number of variables in d equal to 2.
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Then
P(d) = E(F*[1 - F]").

Proof. We prove the case where F is continuous. We have

P(d) = / P|f)p(f)df
1 M
= [ T PGEWINe(H)df

0 ph=1

- /0 £ Po(pdf
E(F*[1 — F]Y.

The second equality above s because the variables in D are conditionally in-
dependent conditional on F', and the third is obtained by repeatedly applying
Equality 6.2 in Definition 6.3.

Recall from Section 4.2.1 that we also use the word ‘sample’ for the set of
observations, which is our data set d, and that it is clear from the context which
we mean.

Corollary 6.2 If the conditions in Theorem 6.2 hold, and F' has a beta distri-
bution with parameters a,b, N = a + b, then

I'(N) T(a+s)I'(b+1)
LN+ M) T(a)T'(d)

Proof. The proof follows immediately from Theorem 6.2 and Lemma 6.4.

P(d) =

Example 6.6 Suppose we have the binomial sample in Example 6.4, and
d={1,2}.
Thena=b=1,N=2,s=1,t=1, M = 2, and due to the preceding theorem,

re ra+nra+1 1
P(d) = =—.
r'2+2) rra) 6
Similarly, if d' = {1,1}, P(d") = 1/3. You may wonder why the probability of
two heads is twice the probability of a heads followed by a tail. Note that

P(d)=P(XM =1,X® =2) = p(x® =2/ xM = 1) p(xM =1)

while
P)=PXMH =1,X% =1)=PX® =1|xD = 1)P(XxD =1).

Intuitively, P(X®) =1|XM = 1) is greater than P(X® = 2| X" = 1) because
once the first toss results in heads, it becomes more likely we have a coin with
propensity for landing heads. So the probability of heads on the second toss is
increased.
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Note that in the previous example, P(d) is the relative frequency with which
we will obtain data d when we repeatedly sample a coin with replacement from
the urn and toss it twice.

Example 6.7 Suppose we have the binomial sample in Example 6.5, and
d=1{1,1,2,1,1,1,1,1,2,1}.

Then a =b =3, N =6,s =28,t=2, M = 10, and due to the preceding
corollary,

re) T'B+8)I(3+2)
I'(6 + 10) r'3)I'(3)

P(d) = = .001998.

Theorem 6.3 If the conditions in Theorem 6.2 hold, then

A= 1)p(f)

p(fld) = BCFL = F])

where p(f|d) denotes the density function of F conditional on D = d.
Proof. We have

i) = KRl

[ = 0)plf)
E(Fs[1— FJt)

The first equality above is due to Bayes’ Theorem. The second equality is due
to the fact that the variables in D are independent conditional on F, Equality
6.2, and Theorem 6.2.

Corollary 6.3 Suppose the conditions in Theorem 6.2 hold, and F has a beta
distribution with parameters a,b, N = a +b. That is,

p(f) = beta(f;a,b).

Then
p(f|d) = beta(f;a+s,b+1t).

Proof. The proof follows immediately from Theorem 6.3 and Lemma 6.5.

Given a sample, the density function denoted p|d is called the updated
density function of the parameters relative to the sample. It represents
our posterior belief concerning the unknown parameters. The previous corollary
shows that when we update a beta density function relative to a binomial sample,
we obtain another beta density function. For this reason, we say the set of
all beta density functions is a conjugate family of density functions for
binomial sampling.
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Figure 6.9: The thickly plotted density function is beta(f;3,3) and represents
our prior belief concerning the relative frequency of heads. The thinly plotted
one is beta(f;11,5), and represents our posterior belief after we have seen 8
heads in 10 trials.

Example 6.8 Suppose we have the binomial sample in Example 6.5 and the
data in Fxample 6.7. Then a =b =3, s =8, and t = 2. Due to the preceding
corollary,

p(f|d) = beta(f;3+ 8,3+ 2) = beta(f;11,5).

Figure 6.9 shows the original density function and the updated density function.

Suppose we have a sample D of size M, a set d of values (data) of the
variables in D, and we create a sample of size M + 1 by adding another variable
X (M+1) t6 the sample. Then the conditional probability distribution of X (M+1)
given d is called the updated distribution relative to the sample and the data
d. It represents our posterior belief concerning the next trial.

In the case of binomial samples, E(F|d) is our posterior estimate of the
relative frequency with which X = 1. The following theorem shows that it is
the same as P(X M+ = 1]d).

Theorem 6.4 Suppose the conditions in Theorem 6.2 hold, and we create a
binomial sample of size M + 1 by adding another variable X(M+1) " Then if D
is the binomial sample of size M, the updated distribution relative to the sample
and data d is given by

P (X0 = 1/d) = E(F|d).
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Proof. We have
1
P (X(M“) = 1|d) = / P(XMTY = 1f,d)p(f|d)df
0

= [ e <yt
0

/0 fo(fld)df
—  BE(F|d).

The second equality above is because XM+1) s independent of the variables
i D conditional on F', and the third is obtained by applying Equality 6.2 in
Definition 6.3.

Corollary 6.4 If the conditions in Theorem 6.4 hold and F has a beta distrib-
ution with parameters a,b, N = a + b, then

(M+1):1d): a+s .
P =) = 5

Proof. The proof follows immediately from Theorem 6.4, Corollary 6.3, and
Lemma 6.3.

Notice that our probability (which is also our estimate of the relative fre-
quency) converges to the relative frequency.

Example 6.9 Suppose we have the binomial sample in Example 6.5 and the
data in FExample 6.7. Then a = 3, N =6, s = 8, and M = 10. Due to the
preceding corollary, the probability of heads for the 11th toss is given by
3+38
P (X<M+1) =1 d) = 2% _ 6875.

| 6 + 10
Furthermore, .6875 is our new estimate of the relative frequency with which the
comn will land heads.

In a Bayesian network representation of our posterior beliefs based on a
sample, we often drop the superscript on X and represent our beliefs as shown
in Figure 6.10. That figure shows our prior beliefs and posterior beliefs in the
case of the previous examples.

6.2 More on the Beta Density Function

First we discuss the case where the parameters a and b in the beta density
function are not integers. Then we present guidelines for assessing the values of
a and b. Finally, we show an argument for using the beta density function to
quantify our beliefs.
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beta(f; 3,3) beta(f; 11,5)
P(X =1|f)=f P(X =1|f)=f
@) (b)

Figure 6.10: The Bayesian network in (a) shows our prior belief concerning the
relative frequency of heads, and the one in (b) shows our posterior belief after
we have seen 8 heads in 10 trials.

6.2.1 Non-integral Values of a and b

So far we have only shown examples where a and b are both integers > 1. Next
we discuss nonintegral values. Figure 6.11 shows the beta(f;.2,.2) density func-
tion. As that figure illustrates, as a and b approach 0, we become increasingly
certain the relative frequency is either 0 or 1.

You may wonder when we would ever use non-integral values of a and b.
The following example gives such a case.

Example 6.10 This example is taken from [Berry, 1996]. Glass panels in high-
rise buildings sometimes break and fall to the ground. A particular case involved
39 broken panels. In their quest for determining why the panels broke, the owners
wanted to analyze the broken panels, but they could only recover three of them.
These three were found to contain Nickel Sulfide (NiS), a manufacturing flaw
which can cause panels to break. In order to determine whether they should hold
the manufacturer responsible, the owners then wanted to determine how probable
it was that all 39 panels contained NiS. So they contacted a glass expert.

The glass expert testified that among glass panels that break, only 5% contain
NiS. However, NiS tends to be pervasive in production lots. So given the first
panel sampled, from a particular production lot of broken panels, contains NiS,
the expert felt the probability is .95 that the second panel sampled also does. It
was known all 39 panels came from the same production lot. Let X ™ s value be
either NiS or "'NiS depending on whether the hth panel contains NiS. Given the
above, the expert’s probabilities are as follows (All probabilities are conditional
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Figure 6.11: The beta(f;.2,.2) density function.
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Figure 6.12: The thickly plotted density function represents an expert’s prior
belief concerning the relative frequency of NiS in glass panels, while the thinly
plotted one represents his belief after he learns 3 window panels contain NiS.
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on the panels breaking and coming from the same production lot):

P (X“) - Nz'S) — 05

P (X<2) = NiS|X® = Nz'S) = .95.

So, if we model the expert’s beliefs with a beta density function, Corollaries 6.1
and 6.4 imply

a a+1
— 05 d _eTn
atb an a+1+0b

.95.

Solving for a and b yields
1 1
b 9

“~ 360 "~ 360

This is an alternative technique for assessing a and b. Namely, we assess the
probability for the first trial. Then we assess the conditional probability for the
second trial given the first one is a ‘success’. So the expert’s belief concerning
the relative frequency of NiS is beta(f;1/360,19/360). Therefore, after sampling
3 windows and seeing they all contain NiS, due to Corollary 6.3, his updated
belief is beta(f; 3+1/360,19/360). The original density function and the updated
one are shown in Figure 6.12. Notice how his belief changes from believing the
relative frequency is either very low or very high (with more density on the low
end) to believing it is most likely very high.

Furthermore, due to Corollary 6.4, we have that the probability any one of
the other 36 panels (the next one sampled) contains NiS is given by

a—+ s 7%+3

20
N+ M %JFB

= .983.

We are really most interested in whether all 36 remaining panels contain
NiS. We can determine the probability of this event as follows. The expert’s
current belief, based on the 3 windows sampled, is beta(f;3 + 1/360,19/360).
Therefore, owing to Corollary 6.2, the probability of the next 36 containing NiS
is equal to

P(B+2%) T(3+ 3555 +36)T (55 +0)

= .866.
I (34 255 +36) I'(3+305) T (555)

6.2.2 Assessing the Values of a and b

Next we give some guidelines for choosing the size of a and b in the beta density
function, when we are accessing our beliefs concerning a relative frequency.

e o = b = 1: These values mean we consider all numbers in [0, 1] equally
likely to be the relative frequency with which the random variable assumes
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each of its values. We would use these values when we feel we have no
knowledge at all concerning the value of the relative frequency. We might
also use these values to try to achieve objectivity in the sense that we
impose none of our beliefs concerning the relative frequency on the learning
algorithm. We only impose the fact that we know at most two things can
happen. An example might be when we are learning the probability of
lung cancer given smoking from data, and we want to communicate our
result to the scientific community. The scientific community would not
be interested in our prior belief, but in what the data had to say. Note
that we might not actually believe a priori that all relative frequencies are
equally probable, but our goal is not to impose this belief on the learning
algorithm. Essentially the posterior probability represents the belief of an
agent that has no prior belief concerning the relative frequency.

a,b > 1: These values mean we feel it more probable that the relative
frequency with which the random variable assumes its first value is around
a/(a+b). The larger the values of a and b, the more we believe this. We
would use such values when we want to impose our beliefs concerning
the relative frequency on the learning algorithm. For example, if we were
going to toss a coin taken from the pocket, we might take a = b = 50.

a,b < 1: These values mean we feel it more probable that the relative
frequency with which the random variable assumes one of its values is low,
although we are not committed to which it is. If we take a = b &~ 0 (almost
0), then we are almost certain the relative frequency with which it assumes
one value is very close to 1. We would also use values like these when
we want to impose our beliefs concerning the relative frequency on the
learning algorithm. Example 6.10 shows a case in which we would choose
values less than 1. Notice that such prior beliefs are quickly overwhelmed
by data. For example, if a = b = .1, and our data d consists of seeing X
take the value 1 in a single trial,

J2 (X<M+1) - 1|d) — = 91T, (63)

Intuitively, we thought a priori that the relative frequency with which X
assumes one of its values is high. The fact that it took the value 1 once
makes us believe it is probably that value.

a < 1,b > 1: These values mean we feel it is more probable the relative
frequency with which X assumes its first value is low. We would also
use values like these when we want to impose our beliefs concerning the
relative frequency on the learning algorithm

You may wonder, why, when we assume no knowledge at all about the rel-
ative frequency (a = b = 1), and the data d contains s occurrences of 1 in N
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trials, we have, due to Corollary 6.4, that

1+s
P(XWH) - 1d) - .
| 2+ N

You may feel the answer should be s/N because this is all the data has to say.
An intuition for this is obtained by looking at an example where our sample size
is one. Suppose I am going to sample dogs and determine whether or not they
eat the potato chips which I offer them. Since I have no idea as to whether a
particular dog would eat potato chips, I assign a = b = 1. Suppose further it
turns out the first dog sampled eats the potato chips. Using Equality 6.3, we
obtain a probability of .67, whereas s/N = 1. The first value (.67) seems to
more accurately model my belief for the next trial. In terms of a comparison to
an urn lottery, it means I would be indifferent between receiving a small prize if
the next dog sampled ate the potato chips and receiving the same small prize if
a white ball were drawn from an urn containing 67% white balls. However, the
second value (1) means I would be indifferent between receiving a small prize if
the next dog sampled ate the potato chips and receiving the same small prize
if a white ball were drawn from an urn containing 100% white balls. T would
feel this way only if I were certain the next dog would eat potato chips, and I
would not be certain of this after one trial. Note that if I take a = b ~ 0 (almost
0), then my updated belief after one trial would be almost 1. This makes sense
since, in this case, my prior belief was that I was almost certain that either all
dogs would eat potato chips or all would not. So after, seeing one eat them, I
become almost certain all will eat them.

6.2.3 Why the Beta Density Function?

The use of the beta distribution to represent our beliefs concerning a relative
frequency is intuitively appealing and has a long tradition. Indeed, in 1889 the
actuary G.F. Hardy and in 1897 the mathematician W.A. Whitworth proposed
quantifying prior beliefs with beta distributions. However, are there any cogent
arguments we should such distributions? Next we present two such arguments.

First, if we initially consider all numbers in [0, 1] equally likely to be the
relative frequency and therefore use the uniform density function to represent
our prior beliefs, it is a mathematical consequence of the theory that the updated
density function is beta.

Second, in 1982 Sandy Zabell proved that, if we make certain assumptions
about an individual’s beliefs, then that individual must use the beta density
function to quantify any prior beliefs about a relative frequency. Zabell’s theo-
rem actually concerns the Dirichlet distribution, which is a generalization of the
beta distribution. So before giving the theorem, we briefly review the Dirichlet
distribution. This distribution is discussed in detail in the next chapter.

Definition 6.4 The Dirichlet density function with parameters ay,as, . .. a,,
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‘e . .
N =>",_, ax, where ai,as,...a, are integers > 1, is

p(fis fore fro1) = FiN)fflflfzaz_l“‘ffr_l 0< fi <1, ka =1

[I I'(ax) k=1
k=1

Random variables Fy, Fy, . .. F,., that have this density function, are said to have
a Dirichlet distribution.
The Dirichlet density function is denoted Dir(fi, fa, ... fr_1;a1,a2,...a).

Note that the value of F). is uniquely determined by the values of the first
r — 1 variables (ie. f. =1— Z;ﬁ;i fr). That is why p is only a function of
r — 1 variables. Let’s show the beta density function is the same as the Dirichlet
density function for r» = 2. In this case, the Dirichlet density function is
I'(N)
I'(a1)T(az2)
F(N) a1—1 —1
= — 1-— az 0< <1

F((ll)r((lg) 1 ( fl) _fl_ )
which is the beta density function.

As mentioned above, we show examples of Dirichlet density functions and
prove properties of the Dirichlet family in the next chapter. Presently, we only
give Zabell’s theorem. First we need some definitions and discussion. We start
with a formal definition of exchangeability:

p(f1) = A 0<fi<L fitfo=1

Definition 6.5 Let D = {X() X®?) . XM} be an ordered set (sequence) of
random variables, each with space {1,2,...r}. If for every two sets of values
d’ and d” of the variables in D, such that each of the r values occurs the same
number of times in d’ and d”, we have

P(d) = P(d"),
the sequence is said to be finite exchangeable.

Note that P above represents an individual’s beliefs. So exchangeability is
relative to an individual.

Example 6.11 Suppose D = {X X X7} represent the outcomes of
seven throws of a sixz-sided die. Then if we assume the sequence is finite ex-
changeable,

P({1,3,2,1,4,2,1}) = P({1,1,1,2,2,3,4})

because in both sets 1 occurs three times, 2 occurs twice, 3 and 4 each occur
once, and 5 and 6 do not occur at all.

Definition 6.6 Let XV, X® XG) e an infinite sequence of random vari-
ables, each with space {1,2,...r}. If for every M, the sequence of the first M

variables is finite exchangeable, the sequence is said to be infinite exchange-
able.
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Exchangeability seems to be a minimal assumption in the case of experiments
which are in some sense considered random processes (Indeed, recall we offered
exchangeability as a Bayesian definition of ‘random process’ in Section 6.1.2.).
For example, it seems many individuals would assign the same probability to
the two sequences of die throws in Example 6.11.

Definition 6.7 Let XV, ... XM X (M+1) pe  sequence of random variables,
each with space {1,2,...7}, and let D = {XM X@) . XM Suppose for
every set of values d of the variables in D, we have

P(XMHD = k|d) = gi(se, M),

where sy, 1s the number of times k occurs in d. That is, the probability the next
variable is equal to k is a function g, only of how many times k occurs in d and
the number of variables in D. Then Johnson’s sufficientness postulate is
said to hold for the sequence.

Example 6.12 Suppose we throw a siz-sided die seven times and we have the
following set of outcomes:

d=1{2,3,1,2,1,2,4}.

Since we repeat the experiment seven times, M is equal to seven and since 2
occurs three times, so is equal to three. Johnson’s sufficientness postulate says
our probability of the eighth throw landing 2 can be determined using a two-

argument function evaluated at three (the value of s3) and seven (the value of
M).

Johnson’s sufficientness hypothesis also seems to be a minimal assumption
in the case of experiments which are in some sense considered to be random
processes. That is, the probability of a given outcome for the next trial can be
computed using the same function for all possible outcomes, and this function
needs only the number of previous trials and the number of times the outcome
occurred. However, given only this hypothesis and the assumption of exchange-
ability, we get the surprising result that an individual’s prior beliefs concerning
the relative frequency must be represented by a Dirichlet distribution. We give
that theorem after a lemma:

Lemma 6.6 Suppose Johnson’s sufficientness postulate holds for X1 ... X (M)
XMAY) and the number of values r in their space is greater than 2. Then there
exists constants ai,az,...a, > 0 and b such that for every set of values d of the
variables in D = {XM X@  xO)Y

P (X<M+1) - k|d) = i + by,

where sy, 1s the number of times k occurs in d.
Proof. The proof can be found in [Zabell, 1982].
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Theorem 6.5 Suppose XV, X2 XG) s an infinite exchangeable sequence
of random wvariables, which are not independent, such that for every M, there
exists constants ai, as,...a, > 0 and b such that for every set of values d of the
variables in D = { XM, X@ X0

P (X<M+1) - kz|d) = ai + bsy, (6.4)

where sy, is the number of times k occurs in d (Note that the values of the
constants depend on M even though we do not explicitly denote that.) Let
Fy, Fs, ... F. be random variables such that for each value fy of Fj such that
0<fr<1

P (X = Kfi) = fi- (6.5)

Then the distribution of the Fys is Dirichlet.
Proof. The proof can be found in [Zabell, 1982].

Lemma 6.6 and Theorem 6.5 together show that if » > 2, then the as-
sumptions of exchangeability, Johnson’s sufficientness postulate, and Equality
6.5 imply the prior distribution of the relative frequencies must be Dirichlet. If
r = 2, we can conclude the prior distributions must be beta from exchangeability
and the linearity condition in Equality 6.4.

Johnson’s sufficientness postulate seems most plausible. However, there are
situations in which it seems to be too strong of an assumption. For example,
while engaged in cryptanalytic work in for the British government in World War
II, the logician Alan Turing noticed that the frequencies of the frequencies may
contain information relative to the probability of each value. That is, Turing
noticed the following. Let ¢; be the number of frequencies equal to i. For
example, suppose there are r = 5 values and we observe the sequence

{2,1,5,3,4,2,3,4,2,1,2}.

Then ¢; = 1 because 5 occurs once, co = 3 because 1, 3, and 4 each occur twice,
c3 = 0 because no value occurs three times, and ¢4 = 1 because 2 occurs four
times. Although it is not obvious, the ¢;’s can sometimes be used to determine
probabilities of the values (See [Good, 1965].).

The use of the Dirichlet distribution to quantify our prior beliefs concerning
relative frequencies only concerns the case where we know the number of values
of the variable in advance. For example, we know a thumbtack can land two
ways, we know a die can land six ways, we know a patient either does or does
not have lung cancer. In some cases, we know the variable but we do not know
how many values it can have. For example, if I were about to be stranded on a
desert island, I would expect to find some species there, but I would not know
how many different species there might be. After seeing one creature of a given
species, I might want to attach a probability to the event the next creature
seen will be of that same species and one minus that probability to the event
that it will be of a new species. If the next creature turns out to be of a new
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species, I would have three possibilities for the third creature, and so on. This
situation, which is not as relevant to Bayesian networks, is discussed in detail
in [Zabell, 1996].

A derivation of the Dirichlet distribution, based on assumptions different
than those of Zabell, can be found in [Geiger and Heckerman, 1997].

6.3 Computing a Probability Interval

Given a distribution (either prior or posterior) of a random variable F', which
represents our belief concerning a relative frequency, Theorem 6.1 tells us the
expected value of F', which is our estimate of the relative frequency, is also our
probability for the next trial. We would not only be interested in this expected
value, but also in how probable it is that the true relative frequency is close to
this expected value. For example, we may want a value ¢ such that

P(f € (E(F) - ¢, E(F) +c)) = .95.

The interval (E(F) — ¢, E(F) + ¢) is called a 95% probability interval for F.
Probability intervals can be computed directly from the distribution of F as the
following examples illustrate.

Example 6.13 Suppose we have the binomial sample in Example 6.5. Then
due to Lemma 6.3, the prior expected value is given by

3

E(F):m:5

A prior 95% probability interval can therefore be found by solving the following

equation for c: N
G
/.5_0 TarE) =95

Using the mathematics package Maple, we obtain the solution ¢ = .353. So our
95% probability interval is

(5 — .353,.5+ .353) = (.147, .853).

Note that we are not all that confident the relative frequency really is around .5.
Suppose now we have the data in Example 6.7. Due to Corollary 6.3, the
posterior density function is beta(f;348,3+2) = beta(f;11,5). Therefore, our
posterior expected value is given by
11

E(Fld) = 7 = 688,

and a posterior 95% probability interval can be found by solving

.688+c& o
/asg_c rayre)’ & =95
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3.5

2.5

474 932

Figure 6.13: The beta(f;11,5) density function. The dotted lines show a 95%
probability interval for F'. This means 95% of the area under the curve is
between .474 and .932.

Using Maple, we obtain the solution ¢ = .214. So our 95% probability interval
18

(.688 — 214, .688 + .214) = (.474,.902).

Note that the width of our interval has decreased significantly in light of the
data. This interval is shown in Figure 6.13.

Example 6.14 Suppose a =31 and b =1. Then

31
B(F) = 37— = 969.

If we try to obtain a 95% probability interval by solving

.9694-c F(32) 0
—_— 1— f)%df = .95,
Jo. TERD 00"
we obtain ¢ = .033 and our 95% probability interval is (.936,1.002). The reason
we obtain this result is that .969 is too close to 1 for there to be an interval,
centered at 969 and contained in the interval (0,1), that yields 95% of the area
under the curve. In this case, we should solve

! I'(32) 7
/ 7”31)”1)#0(1 — /df = .95

.969—c
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to obtain ¢ = .061, which yields a 95% probability interval of
(.969 — .061,1) = (.908, 1).

We obtain a 95% probability interval that is not centered at .969 but at least has
969 as close to its center as possible.

In general, the procedure for obtaining a perc % probability interval is as
follows:

Computing a perc % Probability Interval for E(F)

Solve the following equation for c:
E(F)+c
[ et = perc
E(F)—c
Case (E(F) — ¢, E(F)+c¢) C(0,1):
A perc% probability interval is given by

(E(F) —c¢,E(F)+c).

Case (E(F) —c¢,E(F) +¢) ¢ (0,1) and E(F) > .5:
Solve the following equation for c:

/ p(f)df = pere

E(F)—c

A perc% probability interval is given by

(E(F)—c,1).

Case (E(F)—c¢,E(F)+c¢) € (0,1) and E(F) < .5:
Solve the following equation for c:

E(F)+c
/ p(f)df = pere

.0

A perc % probability interval is given by

(0, E(F)+c).
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Example 6.15 Suppose the density function for F is beta(f;2,51), and we
want a 95% probability interval. We have

E(F) = i .038.
Solving

038te p(53) )
/.038—c Wf (1—f)%df = .95

yields ¢ = —.063. Since (.038 — [—.063],.038 4 [—.063]) = (.101,—.025) ¢ (0,1)
and E(F) < .5, we solve

.038+-c P(53) ) B
/0 Taren! D7 =9

which yields ¢ = .050. A 95% probability interval is therefore given by
(0,.038 4 .050) = (0, .088).

As we shall see in Section 6.6, sometimes we do not have a simple expression
for the density function of F, but we do know the expected value and the
variance. In such cases we can obtain a probability interval using the normal
density function to approximate the given density function. We present that
approximation next.

Computing a perc % Probability Interval for E(F)
Using the Normal Approximation
The normal approximation to a perc % probability interval for F is given by
(E(F) = zperco (F), E(F) 4 Zperco (F)) ,

where o(F') is the standard deviation of F, and zper. is the z-score obtained
from the Standard Normal Table. The following are some typical values for

zperc:
perc | Zperc
80 1.28
95 1.96
99 2.58

Before giving an example of the above approximation, we present a lemma
that enables us to compute the variance of a random variable that has the beta
distribution.
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Lemma 6.7 Suppose the random variables F' has the beta(f;a,b) density func-

tion. Then
a+1 a
E(F?) = .
() (a+b+1)<a+b)

Proof. The proof is left as an exercise.

Example 6.16 Suppose F' has density function beta(f;11,5). Then due to the

preceding lemma,
11+1 11
B(F) = -3
114+5+1 1145 68

which means the variance of F' is given by

V(F) = E(F?) - [E(F)” = % - G—é) = .012638,

and therefore

o(F) =+/V(F) =V.012638 = .112.

The normal approzimation therefore yields the following 95% probability inter-
val:
(.688 — (1.96)(.112),.688 + (1.96)(.112)) = (.468, .908).

Compare this to the exact answer of (.474,.902) obtained in Example 6.13.

The normal density function becomes a better approximation of beta(f;a,b)
as a and b become larger and as they become closer to being equal. If a and b
are each at least 5, it is usually a reasonable approximation.

6.4 Learning Parameters in a Bayesian Network

Next we extend the theory for learning a single parameter to learning all the
parameters in a Bayesian network. First we motivate the theory by presenting
urn examples in which we have only two variable networks. Then we formally
introduce augmented Bayesian networks, and we show how they can be used to
learn parameters in a Bayesian network.

6.4.1 Urn Examples

Recall Figure 6.1 showed an urn containing 101 coins, each with a different
propensity (relative frequency) for landing heads. The propensities were uni-
formly distributed between 0 and 1. Suppose now we have two such urns as
shown in Figure 6.14, we sample a coin from each urn, we toss the coin from the
urn labeled X, and then we toss the coin from the urn labeled Xs. For the sake
of simplicity assume the distributions are each the uniform continuous distrib-
ution rather than a discrete distribution. Let X; be a random variable whose
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Xl )(2

Figure 6.14: Each urn contains 101 coins, each with a different propensity for
landing heads.

value is the result of the first toss, and X5 be a random variable whose value is
the result of the second toss. If we let 1 stand for heads and 2 stand for tails,
the Bayesian network in Figure 6.15 (a) represents the probability distribution
associated with this experiment. Recall from Section 6.1.1 that such a Bayesian
network is called an augmented Bayesian network because it includes nodes
(which we shade) representing our beliefs about relative frequencies. The prob-
ability distribution of Fi; is our belief concerning the relative frequency with
which the first coin lands heads, while the probability distribution of Fy; is our
belief concerning the relative frequency with which the second coin lands heads.
It is not hard to see that the Bayesian network, whose specified conditional
distributions are the marginal distributions of X; and Xs, contains the joint
distribution of X; and Xs. We say this Bayesian network is embedded in the
augmented Bayeisan network. ‘Embedded Bayesian network’ is defined formally
in Section 6.4.2. Owing to Corollary 6.1, this network is the one Figure 6.15
(b). From that network we have
1 1 1
)(3)=1

P(X;=1,X,=1)=P(X; =1)P(Xy=1) =

\)

| =

P(Xi=1,X=2)=P(X; =1)P(X2 =2) = <
PX;=2,Xo=1)=P(X; =2)P(Xo=1) = <

~— N
I
NI

P(X;=2,X2=2)=P(X; =2)P(X; =2) = <

| =
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beta(f,;; 1,1) beta(f,,; 1,1)

E—@
E—@

PX =1l ) ="f, P(X,=1]fy) =1,
(@
P(Xlz 1)=1/2 P(X2: 1)=1/2

(b)

Figure 6.15: A Bayesian network representing the probability distribution con-
cerning the experiment of sampling and tossing coins from the urns in Figure
6.14 is in (a); a Bayesian network containing the marginal distribution of X
and X» is in (b).

Note that these probabilities are not the relative frequencies with which the
outcomes will occur (unless we sample the two coins with propensity .5). Rather
they are our beliefs concerning the first outcome. They are also the relative
frequencies with which the outcomes will occur if we repeatedly sample coins
with replacement and tossed each sample pair once.

Suppose now we repeatedly toss the coins we sampled. Our goal is to update
the probability distributions in the augmented Bayesian network (and therefore
the parameters in the embedded network) based on the data obtained from
these tosses. Intuitively, we might expect, we could update the distributions
of Fyjand Fy; separately using the techniques developed in Section 6.1.2, and
we could compute the probability of data by multiplying the probability of the
data on X; by the probability of the data on X5. The theory developed Section
6.4.3 justifies doing this. Presently, we illustrate the technique in an example.

Example 6.17 Suppose we sample coins from the urns in Figure 6.14, we toss
the coins T times, and we obtain the data d in Table 6.1. In that table, the ith
row shows the outcome for the ith pair of tosses. Recall 1 stands for heads and
2 for tails. Let

1. s11be the number of times X1 equals 1;

2. t11 be the number of times X1 equals 2;
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Case

ML\D[\DHHHHEQ
M»—»—w»—»—»—gﬂ

~N O Tk W N

Table 6.1: Data on 6 cases

3. So1 be the number of times Xy equals 1;
4. to1 be the number of times Xo equals 2.

Updating the distributions of X1 and Xo separately, we have due to Corollary
6.3 that

p(fi1ld) = beta(fi1:a1r + s11,b11 + t11)
= beta(fu; 1+4,1+ 3) = beta(fn; 5, 4)

p(farld) = beta(far; a1 + s21,b21 + ta1)
= bet(l(fgl; 1+ 5, 1+ 2) = bet(l(le; 6, 3)

The updated augmented and embedded Bayesian networks appear in Figures 6.16
(a) and (b) respectively. According to the embedded Bayesian network,

) 2

P(X, =1,% =1) = P(X; = )P(X; = 1) = (5) <§)

_ 10
27

P(X;=1,X,=2)=P(X; = 1)P(Xy =2) = (g) <é) = %

P(X;=2,X,=1)=P(X; =2)P(Xy =1) = (3) @) = %

P(X1=2,X,=2)=P(X; =2)P(Xy=2) = (g) <é) = 257,

which is the probability given the data d.

Furthermore, assuming we can compute the probability of the data by mul-
tiplying the probability of the data on Xy by the probability of the data on Xs,
owing to Corollary 6.2 we have

T'(N1i1+Miq) T'(a11)(b11) T'(N21+Mo1) T'(a21)T(b21)

_ [ r(2) 1‘(1+4)1‘(1+3)} [ r(2) 1‘(1+5)1‘(1+2)}
- |Tern  TOrQ) T(2+7)  T(MI(1)

= 2.1259 x 107°.

P(d) _ |: T'(N11) F(a11+511)1‘(b11+t11)} |: T'(N21)  TI'(a21+521)T(ba1+t21)
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beta(f,;; 5,4) beta(f,,; 6,3)

—@
—@

P(X =1 f,) =1, P(X,=1] f,) = f,y
@

&)
&)

P(X,=1) =5/9 P(X,=1) = 2/3
(b)

Figure 6.16: A Bayesian network containing the posterior probability distribu-
tion given data obtained by performing the experiment of sampling and tossing
coins from the urns in Figure 6.14 is in (a); a Bayesian network containing the
posterior marginal distribution of X; and X5 is in (b).

Note that P(d) is the relative frequency with which we will obtain data d when
we repeatedly sample coins with replacement from the urns and toss each sample
pair 7 times.

Suppose now we have three urns, each containing coins with propensities
uniformly distributed between 0 and 1, as shown in Figure 6.17. Again assume
the distributions are each the uniform continuous distribution. Suppose further
we sample a coin from each urn. We then toss the coin from the urn labeled
X;. If the result is heads (1), we toss the coin from the urn labeled X5|X; = 1,
and if the result is tails (2), we toss the coin from the urn labeled X5|X; =
2. Let X; be a random variable whose value is the result of the first toss,
and let X5 be a random variable whose value is the result of the second toss.
The Bayesian network in Figure 6.18 (a) represents the probability distribution
associated with this experiment. The probability distribution of Fj; is our
belief concerning the relative frequency with which the first coin lands heads,
the probability distribution of Fb; is our belief concerning the relative frequency
with which the second coin lands heads when the first coin lands heads, and the
probability distribution of Fhs is our belief concerning the relative frequency
with which the second coin lands heads when the first coin lands tails. Note the
difference between the network in Figure 6.18 (a) and the one in Figure 6.15
(a). In our second experiment, a result of tossing the coin picked from the urn
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Xy

X,X,=1 X,|X,=2

Figure 6.17: Each urn contains 101 coins, each with a different propensity for
landing heads.

labeled X2|X; = 1 tells us nothing about the coin picked from the urn labeled
X5|X1 = 2. So Fy; are Fyy independent in Figure 6.18 (a). However, in our
first experiment, the same coin is used in the second toss regardless of the value
of Xy. So in this case Fy; and Fyy are completely dependent (deterministically
related) and are therefore collapsed into one node in Figure 6.15 (a) (It is also
labeled F5; in that figure.).

It is not hard to see that the Bayesian network, whose specified conditional
distributions are the marginal distributions of X7, of X5 conditional on X; = 1,
and of X5 conditional on X; = 2, contains the joint distribution of X; and Xs.
This network is shown in Figure 6.15 (b). From that network we have

P(X1=1,Xs = 1) = P(Xs = 1|X; = DP(X1 = 1) = <1> <1> _ %1

2 2
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beta(f,;; 1,1) beta(f,;; 1,1) beta(f,,; 1,1)

& & &
(%)

PX, =1 f) =, P(X,= 11X, = 1,f,) =f,,
P(X,=1IX,=2/f,,)) =1,,
@)

P(X,=1)=12 PX,=1|X,=1)=1/2
P(X,=1|X,=2) = 1/2
(b)

Figure 6.18: A Bayesian network representing the probability distribution con-
cerning the experiment (as discussed in the text) of sampling and tossing coins
from the urns in Figure 6.17 is in (a); a Bayesian network containing the mar-
ginal distribution of X; and Xs is in (b).
1
) ()

P(X1=2,Xs =1) = P(Xs = 1| X1 = 2)P(X, = 2) = (é) G) _

1
P(X;1=1,X,=2)=P(X,=2|X; = 1)P(X; = 1) = (5

P(X1=2,X,=2) = P(X; = 21X, =2)P(X, = 2) = <é> <é>

L N

Suppose now we repeatedly toss the coins we sampled according to the rules
of the experiment discussed above. Our goal again is to update the probability
distributions in the augmented network (and therefore the parameters in the
embedded network) based on the data obtained from these tosses. Again we
might expect, we could update the distributions Fiy, Fo1, and Fhy separately
using the techniques developed in Section 6.1.2, and we could compute the prob-
ability of data by multiplying the probability of the data on X, the probability
of the data on X5 when X; = 1, and the probability of the data on X5 when
X7 = 2. The theory developed Section 6.4.3 justifies doing this. Presently, we
illustrate the technique in an example.

Example 6.18 Suppose we sample coins from the urns in Figure 6.17, we toss
the coins 7 times according to the rules of the experiment discussed above, and
we again obtain the data d in Table 6.1. Let
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beta(f,;; 5,4) beta(f,,; 4,2) beta(f,,; 3,2)

P(X,=1|f,)=f, PX,=1X,=1f,)=f,,
P(X, = 1|X, = 2,f,,) =f,,
@)

P(X,=1)=5/9 P(X,=1|X,=1)=2/3
P(X,= 1|X,=2) =3/5
(b)

Figure 6.19: A Bayesian network containing the posterior probability distrib-
ution given data obtained by performing the experiment (as discussed in the
text) of sampling and tossing coins from the urns in Figure 6.17 is in (a); a
Bayesian network containing the posterior marginal distribution of X; and X,
is in (b).

1. s11 be the number of times X, equals 1;
2. ty1 be the number of times X, equals 2;
3. $o91 be the number of times Xo equals 1 when X1 equals 1;
4. ta1 be the number of times Xo equals 2 when Xy equals 1;
5. S99 be the number of times Xo equals 1 when X1 equals 2;
6. tag be the number of times Xa equals 2 when X1 equals 2.
Updating the distributions separately, we have due to Corollary 6.3 that

p(fi1ld) = beta(fi1:a1r + 511,011 + t11)
= beta(fu; 1+4,1+ 3) = beta(fn; 5, 4)

p(farld) = beta(for; a1 + s21,b21 + t21)
= beta(fa1;143,1+1) = beta(fa1;4,2)

p(fa2ld) = beta(faz;azz + S22,b20 + ta22)
= bet(l(fgg; 1+ 2, 1+ 1) = bet(l(fgg; 3, 2)



6.4. LEARNING PARAMETERS IN A BAYESIAN NETWORK 331

The updated augmented and embedded Bayesian networks appear in Figures 6.19
(a) and (b) respectively. According to the embedded Bayesian network,

P(Xi=1,Xs = 1) = P(Xs = 1|X; = DP(X; = 1) = (2) (?) _ 10

3)\9) 21
P(X1=1,X,=2)=P(Xo=2[X; = 1)P(X; =1) = (é) (g) = %
P(X;=2,X,=1)=P(X, =1X; =2)P(X; =2) = (%) (3) = 1%

2 4 8

P(X;=2,X,=2)=P(Xy =2|X; =2)P(X; =2) = (5) (9) ==
Note that this is not the same distribution as obtained in Example 6.17 even
though the prior distributions are the same.

Furthermore, assuming we can compute the probability of the data by multi-
plying the probability of the data on Xi, the probability of the data on Xo when
X, =1, and the probability of the data on Xy when X, = 2, owing to Corollary
6.2 we have

I'(N- I'(a11+s I'(by1+t
P@ = [roriim e
X[ T'(Nay) F(a21+521)1‘(b21+t21)}[ T'(Naoy) F(a22+522)1‘(b22+t22)}
I'(N21+Mo1) T'(a21)T(b21) T'(Naz+Maso) T'(a22)(ba2)
_ [ r(2) 1‘(1+4)1‘(1+3)} [ r(2) 1‘(1+3)1‘(1+1)} [ r(2) 1‘(1+2)1‘(1+1)}
= |Te+n T T(2+4) T T(2+3) T

= 1.4881 x 107°.

Note that P(d) is the relative frequency with which we will obtain data d when we
repeatedly sample coins with replacement from the urns and toss them 7 times
according to the rules of the experiment. Note further that it is not the same as
P(d) obtained in Example 6.17.

6.4.2 Augmented Bayesian Networks

Next we formalize the notions introduced in the previous subsection.

Definition 6.8 An augmented Bayesian network (G,F,p) is a Bayesian
network determined by the following:

1. A DAG G = (V,E) where V = {X1,Xa,... X} and each X; is a random
variable.

2. For every i, an auziliary parent variable F; of X; and a density function
p; of Fi. Each F; is a root and has no edge to any variable except X;. The
set of all F;s is denoted by F. That is,

F=F UFaU---F,.
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3. For every i, for all values pa; of the parents PA; inV of X;, and all values
f; of F;, a probability distribution of X; conditional on pa; and f;.

In general, in an augmented Bayesian network the distributions of the F;s
need not be continuous. However, since in the ones we consider they are, we
denote them that way. Furthermore, the conditional distribution of the Xs
may be either continuous or discrete. Still, we denote the joint distribution of
the XiS by P.

The idea in an augmented Bayesian network is that we know conditional
independencies among a set of variables, and we are able to represent these
conditional independencies using a DAG G. We then want to represent our
beliefs concerning the unknown conditional relative frequencies (parameters)
needed for that DAG. We do this using the nodes in F. F; is a set of random
variable representing our belief concerning the relative frequencies of the values
of X; given values of the parents of Xj.

Clearly, an augmented Bayesian network is simply a Bayesian network. It is
only the notation that distinguishes it.

Since the F;s are all roots in a Bayesian network, they are mutually inde-
pendent. Therefore, we have Global Parameter Independence:

p(fi,fa, . fn) = pr(fi)pa(f2) - o (F)- (6.6)

Subscripting both p and f creates clutter. So from now on we will just write the
joint distribution in Equality 6.8 as follows:

p(f1)p(f2) - p(fn)

It’s clear from the subscript on f which density function each p represents.
We have the following theorem:

Theorem 6.6 Let an augmented Bayesian network (G,F,p) be given. Then
the marginal distribution P of {X1, Xa,...X,} constitutes a Bayesian network
with G. We say (G,F, p) embeds (G, P).

Proof. It is left as an exercise to show that, in general, when we marginalize by
summing (integrating) over the values of a set of roots in a Bayesian network,
such that each root in the set has only one child, the marginal distribution of the
remaining variables constitutes a Bayesian network with the subgraph containing
those variables.

After developing an augmented Bayesian network, its embedded network is
the one used to do inference with the variables in V since this latter network
contains our probability distribution of those variables.

The following augmented Bayesian networks are discussed in this chapter:

Definition 6.9 A binomial augmented Bayesian network (G,F,p) is an
augmented Bayesian network as follows:

1. For every i, X; has space {1,2}.
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2. For every i, there is an ordering [pa;i, paz, - - - paiqi] of all instantiations
of the parents PA; in V of X;, where q; is the number of different instan-
tiations of these parents. Furthermore, for every i,

Fi:{ElaFiQ;"'Fiqi};

where each Fj; is a root, has no edge to any variable except X;, and has
density function

pi;(fiz) 0< fi; <L

3. For every i and j, and all values f; = {fi1,... fij,... fig;} of Fi,

P(XZ = 1|paw,f11,fl],f1ql) :ij (67)

If X; is a root, PA; is empty. In this case, ¢; = 1 and pa,; does not appear
in Equality 6.7.

Since the Fj;s are all root in a Bayesian network, they are mutually inde-
pendent. So besides the Global Parameter Independence of the sets F;, we have
Local Parameter Independence of their members Fj;. Thatis, for 1 <7 <n

p(fir, fiz, - fig:) = p(fir)p(fiz) - -~ p(fig.)-
Global and local independence together imply

p(f11; fizs - - fag,) = p(f11)p(f12) - -+ p(frg,)- (6.8)

Note that again to avoid clutter we did not subscript the density functions.

Figure 6.20 (a) shows a binomial augmented Bayesian network. Note that
we shade the nodes in F. Note further that to avoid clutter in this and future
figures we do not show the conditional distributions in the augmented network.
They are all given by Equality 6.7. In the network in Figure 6.20 (a), g1 = 1,
Q2 =2,q3 =2, and

PA, =0 pa;, =@

PA; = {X1} pay = {1}

page = {2}
PA; = {Xo} pag = {1}
pazg = {2}

In a binomial augmented Bayesian network, F;; is a random variable whose
probability distribution represents our belief concerning the relative frequency
with which X; is equal to 1 given that the parents of X; are in their jth in-
stantiation. For example, in Figure 6.20 (a), the probability distribution of Fiq
represents our belief concerning the relative frequency with which X is equal to
1, the probability distribution of Fb; represents our belief concerning the relative



334 CHAPTER 6. PARAMETER LEARNING: BINARY VARIABLES

beta(f,,; 8,2) beta(f,,; 2,6) beta(f,,; 1,1) beta(f,,; 2,1) beta(f,,; 3,4)
11 21 22 31 32

xl x2 @
@
P(X, = 1|X, = 1) = 1/4 P(X, = 1|X, = 1) = 2/3
P(X, = 1)= 4/5 P(X,=1|X, =2) = 112 P(X, = 1|X,=2) = 3/7
) »(%) »(%)
(b)

Figure 6.20: A binomial augmented Bayesian network is in (a), and its embedded
Bayesian network is in (b).

frequency with which X5 is equal to 1 given that X; = 1, and the probability
distribution of Fys represents our belief concerning the relative frequency with
which X5 is equal to 1 given that X; = 2. Furthermore, Equality 6.7 is the same
assumption we made in Section 6.1. Namely, if we knew a relative frequency for
certain, then that relative frequency would be our probability.

Given a binomial augmented Bayesian network (G, F, p), the following theo-
rem proves that the conditional probabilities in the embedded Bayesian network
(G, P) are equal to the expected values of the variables in F.

Theorem 6.7 Let a binomial augmented Bayesian network (G, F, p) be given.
Then for each i and each j, the ijth conditional distribution in the embedded
Bayesian network (G, P) is given by

P(X; = 1|pa;;) = E(Fy;). (6.9)

Proof. We have
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P(X; = 1|paij)

1 1
/0 /0 P(Xi = 1lpaj, fits - fig)p(fir) - p(figs)dfir - - - dfiq,

1 1
/0 . /0 fiip(fia) - plfig )ifir - dfig

1
= /0 fijp(fij)dfij
= E(F;).

The first equality above is due to the law of total probability and the fact that F is
independent of PA;, the second is due to Equality 6.7, and the third is obtained
by integrating over all density functions other than p(fi;).

Corollary 6.5 Let a binomial augmented Bayesian network be given. If each
Fij has a beta distribution with parameters aij, bij, Nij = a;; + b;j, then for each
1 and each j the ijth conditional distribution in the embedded network (G, P) is
given by

(227

N’

Proof. The proof follows directly from Theorem 6.7 and Lemma 6.3.

P(X; = 1|paij) =

Example 6.19 Consider the augmented Bayesian network in Figure 6.20 (a).
We have

B(Fn) = 5oe=1
B(Fn) = T5=3
E(F31) = %:g
B(Fp) = 5o5=1

Therefore, that augmented Bayesian network embeds the Bayesian network in
Figure 6.20 (b).

As mentioned previously, the embedded Bayesian network is the one used
to do inference with the variables in V. For example, after developing the bino-
mial augmented Bayesian network in Figure 6.20 (a), we do inference using the
network in Figure 6.20 (b).

Before ending this subsection, we discuss the assumption concerning our be-
liefs entailed by a binomial augmented Bayesian network. Namely, it is assumed
that the variables, whose probability distributions represent our belief concern-
ing the relative frequencies, are independent. This assumption holds for the
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urn examples presented in Section 6.4.1. In many cases, however, it seems it
does not hold. For example, suppose in a given population, we find out the rel-
ative frequency of lung cancer given smoking is .99. This unusually high value
should make us suspect there is some other carcinogenic present in the popula-
tion, which means we should now believe the relative frequency of lung cancer
given nonsmoking is higher than we previously thought. Nevertheless, even if
the assumption does not hold in a strict sense, we can still make it because,
regardless of our personal beliefs, the learning algorithm in the next section will
converge to the true joint distribution of the relative frequencies as long the
conditional independencies entailed by the DAG are correct. We might say that
our model represents the beliefs of an agent that has no prior knowledge about
the variables other than these conditional independencies. Note that we can cre-
ate arcs among the Fj;s or introduce hidden variables that connect them, and
thereby model our beliefs concerning dependence of these variables. However,
this method will not be discussed in this text.

6.4.3 Learning Using an Augmented Bayesian Network

Next we develop theory which entails we can update probability distributions
as illustrated in Section 6.4.1. Random vectors (defined in Section 5.3.1) are
used in this development.

We start with the following definitions:

Definition 6.10 Suppose we have a sample of size M as follows:

1. We have the random wvectors

Xfl) X§2) Xl(JVI)
<) _ : X2 _ : oxn _ :
X’I(Ll) X’I(L2) X’I(LJ\/I)

D— {X<1),X<2), . ..X<M)}

such that for every i each Xi(h) has the same space.
2. There is an augmented Bayesian network (G, F, p), where G = (V, E), such
that for 1 <h < M,
xM, . xMy

constitutes an instance of V in G resulting in a distinct augmented Bayesian
network.

Then the sample D is called a Bayesian network sample of size M with
parameter (G, F).

Definition 6.11 Suppose we have a Bayesian network sample of size M such
that
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(b)

Figure 6.21: The high-level structure of a Bayesian network sample is given by
the DAG in (a). In that DAG, each node and arc actually represents a set of
nodes and arcs respectively. The detailed structure in the case of a binomial
augmented Bayesian network sample when m = n = 2 is shown in (b).

1. for every i each Xi(h) has space {1,2};
2. its augmented Bayesian network (G,F, p) is binomial.

Then D is called a binomial Bayesian network sample of size M with
parameter (G, F).

Note that the network (G,F,p) is used as a schema for representing other
augmented Bayesian networks. Note further that in application each X" is a
case; that is, it is a random vector whose value is data on one individual sampled.
Finally, note that a Bayesian network sample is itself a big Bayesian network,
and that for each h the subgraph, consisting of the variables in F united with
the set of variables that comprise each X", constitutes an augmented Bayesian
network with p. This is illustrated in Figure 6.21. From that figure, we see that
the X")s are mutually independent conditional on F because F d-separates all of
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them. A binomial sample (See Definition 6.3.) is a binomial Bayesian network
sample in which G contains only one node.

The idea in a Bayesian network sample is that we know the conditional inde-
pendencies in the relative frequency distribution of a set of variables, and we are
able to represent these independencies and our beliefs concerning the relative
frequencies of the variables using an augmented Bayesian network. Then we
obtain data consisting of a set of cases (different instantiations of those vari-
ables). Our goal is to update our beliefs concerning the relative frequencies from
the data. To that end, we first obtain results that apply to all Bayesian net-
work samples. After that, we obtain results pertaining specifically to binomial
Bayesian network samples.

Results for all Bayesian Network Samples

Lemma 6.8 Suppose

1. D is a Bayesian network sample of size M with parameter (G, F);

2. we have a set of values (data) of the XM s as follows:

ZI?gl) ng) ng)
W= x@ = UG Vo R :
xgl) ngZ) ngM)

d={xM x®  xO)y,

Then
n M
P(dlfe,...f,) =[] T] P! Ipal™ . ),
i=1h=1
where pagh) contains the values of the parents of X; in the hth case.
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Proof. We have

M
Pdlfy,...f.) = [ P&, . )
h=1
B ﬁP(x(h),fl,...fn)
AL p(f, )

M HP (h (h )Hp(fl)
_ H — 1=1

h=t Hp(fz')

i=1
_ . P (h (h )
g
n M
— H H P(xl(.h) |pal(.h), f;).
i=1 h=1

The first equality above is because the XM s are mutually independent given F,
and the denominator in the third equality is due to global parameter independence.

Lemma 6.9 Suppose we have the conditions in Lemma 6.8. Then for each 1,

d|f HP (h (h H/HP (h |P (h, ) ( ) f

h=1 Jj#ig. h=1
fj

Proof. We have

P@f) = / Plfy,.. £2) ] Io(5)df;]

£ 46, i#

= / HHP Wpal™ ) [T lo(F;)df)
£, J=1h=1 j#i
HP M pa™ f, / HHP 1pa ) [T Io(F)df,)
h=1 £, 5, Jj#ih=1 J#i
HP 2+ |pa(h H/HP 2™ |pa(h, f)p(f;)df;.
h=1 j;éz h=1

The first equality above is due to the law of total probability and global parameter
independence, and the second is due to Lemma 6.8.
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Theorem 6.8 Suppose we have the conditions in Lemma 6.8. Then

ﬁ(/HP M 162 £)p (fi)df>.

i=1 h=1
Proof. We have

PE) = [ [P R0 ol )i,

fn

HHP (h |pa(h’ Z) ( ) p(fn)dfldfn

1=1h=1

(/HP (el pal" o)) )
h=1

The second equality above is due to Lemma 6.8.

I
1;:13 ”% S

Theorem 6.9 (Posterior Global Parameter Independence) Suppose we
have the conditions in Lemma 6.8. Then the F;s are mutually independent
conditional on D. That is,

p(fy, .. fu]d) = Hp(md).

Proof. We have

p(fi, ... fold) = P(d)lzl
n M n
[T 11 PG pal™, &) T o)
_ 1=1 h=1 P(d) 1=1 ) (610)

The first equality above is due to Bayes’ Theorem and global parameter indepen-
dence, and the second is due to Lemma 6.8.

We have further that for each i
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_Hp(fz-ld)
- Pdf
_ H |

i=1

T Pelea 0T [ TT P 0 0006, | )

h=1 j;éz h=1

::E P(d)

TTTT P lpal® HH/HP“‘“fmm@IDm

i=1 h=1 i= 1];&1] h=1 i=1
B [P(d)]"
n M n
[TTI P pal™, ) (P@)" ] o(f)
_ 1=1h=1 =1
[P(d)]"
n M n
[T T P pal™, &) ] o)
_ i=lh=1 i=1
= P (6.11)

The first equality above is due to Bayes’ Theorem, the second is due to Lemma
6.9, and the fourth is obtained by rearranging terms and applying Theorem 6.8.
Since Expressions 6.10 and 6.11 are equal, the theorem is proven.

Before giving our final theorem concerning Bayesian network samples, we
have the following definition:

Definition 6.12 Suppose we have the conditions in Lemma 6.8. Then the aug-
mented Bayesian network (G, F, p|d) is called the updated augmented Bayesi-
an network relative to the Bayesian network sample and the data d. The net-
work it embeds is called the updated embedded Bayesian network relative
to the Bayesian network sample and the data d.

Note that p|d denotes the density function p(fy,...f,|d).

Theorem 6.10 Suppose the conditions in Lemma 6.8 hold, and we create a
Bayesian network sample of size M + 1 by including another random vector
X£M+1)
X(]VI+1) _ :
XM+
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Then if D is the Bayesian network sample of size M, the updated distribution
P(ngH), M)

is the probability distribution in the updated embedded Bayesian network.

Proof. We have due to that law of total probability that

P(ngH) . ..:rglMH) |d)

— // PMY M d)p(fy, . f|d)dfy - df,
fy f

n

_ // PV LMD o(F L ld)dE, - - dF,.
f, f

n

The second equality is because XM+ is independent of D conditional on F.
This proves the theorem since this last expression is the probability distribution
in the updated embedded Bayesian network.

Due to Theorem 6.10, the updated embedded Bayesian network is the one
used to do inference for the M + 1st case. When doing inference for that case,
we ordinarily do not use the superscript but rather just use the notation Xj;.
Furthermore, we do not show the conditioning on D = d. Essentially, we simply
use the updated embedded network as always representing our current belief for
the next case.

Results for Binomial Bayesian Network Samples
Next we apply the previous results to binomial Bayesian network samples.
Lemma 6.10 Suppose

1. D is a binomial Bayesian network sample of size M with parameter (G, F);

2. we have a set of values (data) of the XM as follows:

o e e
<) — 3 <@ — : () :
o o o0

d={xM x® xO)y;

3. M;; is the number of x" s in which X i(h) ’s parents are in their jth instan-
tiation, and of these M;; cases, sij is the number in which :I:Eh) s equal to
1 and t;; is the number in which it equals 2.

Then

l di
[1 2@ pa £ = [T (i) (1 = fip)"
h=1 i

Proof. Let
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Hi; be the set of all indices h such that Xi(h) ’s parents are in their jth instan-
tiation pa;;.

We have

M
HP Mpal™ f) = T P pal, fu.. . fig.)

h=1 h=1

qi
= I 1I P lpa;, fir, - fiq:)

j=1heH;;
di
H(fij)Sij (1—fij)t.

j=1

The first equality above is obtained by substituting the members of f;, the second
is obtained by rearranging terms, and the fifth is due to Equality 6.7.

Lemma 6.11 Suppose we have the conditions in Lemma 6.10. Then

P(d|f11a---fnqn) HH S” 1*fw)”

1=1j5=1
Proof. We have

P(d|fi1,.-- fng,) = P|f1,...f,)

n M
— LTI P, 5

i=1h=1

= HH f’L] 17f’b])1]

The first equality above is obtained by replacing the members of the f;s by these
sets, the second s due to Lemma 6.8, and the third is due Lemma 6.10.

Theorem 6.11 Suppose we have the conditions in Lemma 6.10. Then

=11 H E(Fi*7[1 = Fy)'™).

i=1j=1
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beta(f,;; 1,1) beta(f,;; 1,1) beta(f,,; 1,1) beta(f,; 4,6) beta(f,,; 2,3) beta(f,,; 4,3)

@ ©

P(X,=1)=1/2 P(X,=1X,=1)=1/2 P(X,=1)=2/5 P(X,=1|X;=1)=2/5
P(X,=1|X,=2)=1/2 P(X,=1|X, =2)=4/7

(b) (d)

Figure 6.22: An augmented Bayesian network is in (a) and its embedded
Bayesian network is in (b). Updated networks are in (c) and (d).

Proof. We have

P(d) = (/HP )52 £, )o(f >df>

lhl

= /1_1 b” 17f’bj)1]p( )df

i=1 \/fij=1
- 1111 / )5 (L= £i)' p(fiy)lf
1=1j5=1
= HHEwa [1— Fy]').
1=1j5=1

The first equality is due to Theorem 6.8, and the second is due Lemma 6.10.

Corollary 6.6 Suppose we have the conditions in Lemma 6.10 and each Fjj
has a beta distribution with parameters a;j,b;j, Nij = a;j + bij. Then

ﬁ 1_1[ I‘(aij + Sij)r(bij + tij) .
i=1j= 1P N JFMW F(aij)r(bij)

Proof. The proof follows immediately from Theorem 6.11 and Lemma 6.4.
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Case | X7 | Xy
1 1 2
2 1 1
3 2 1
4 2 2
5 2 1
6 2 1
7 1 2
8 2 2

Table 6.2: Data on 8 cases

Example 6.20 Suppose we have a binomial Bayesian network sample whose
parameter is the augmented Bayesian network in Figure 6.22 (a). For the sake
of concreteness, let’s say the variables represent the following:

Variable | Value | When the Variable Takes this Value
X3 1 There is a history of smoking
2 There is no history of smoking
X, 1 Lung Cancer is present
2 Lung Cancer is absent

Suppose further that we obtain the data (values of Xy1and X3) on 8 individuals
(cases) shown in Table 6.2. Then

o) (1) (1) ()
2 2 1 2

(6) — (6) — (M — ®) —

ea(1) w(1) (1) ()

d={xM x®  x®1}

Counting yields s11 = 3, t11 = 5, So1 = 1, tog = 2, S99 = 3, tog = 2. From
Figure 6.22 (a), we see for all i and j that a;; = b;; = 1. Therefore, due to the
preceding corollary,

P(d) = r'(2) I(143)L(1+5) re) ra4+nr(+2) r'(2) I(143)I'(1+2)
(d) = T(2+8) T(1)T(1) T(2+3) T(1)T(1) T(2+5) T(1)T(1)
= 2.7557 x 1076,

Theorem 6.12 (Posterior Local Parameter Independence) Suppose we
have the conditions in Lemma 6.10. Then the Fj;s are mutually independent
conditional on D. That 1is,

n o 4q;

p(f1rs fizs - fagald) = [T TT o(£i519).

i=1j=1
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Furthermore,

(i) (U= fij)' p(fig)
p(fzj|d)* E(F S”[l*F ]”) .

Proof. We have

P(d|fi1; - - - frgn)p(f11) - - p(frgn)

P(flla---fnqn|d) = P(d)
(H ﬂ(fz‘j)s“ (1- fz‘j)t”) p(fi1) - p(fngn)
- P(d)
H ﬂ(fz‘j)s” (1= fij)"p(fij)
G
H ﬂ(fz‘j)s” (1= fij)"p(fij)
HﬂE(FMS” [1— Fi;]ts)
T (fij)® (1 = fij)" p(fiz)
B Zl_[ljl_[l E(Fj;%i[1 — Fyjltis)

The first equality above is due to Bayes’ Theorem, the second is due to Lemma
6.11, the third is obtained by rearranging terms, and the fourth is due to Theorem
6.11.

We have further that for each uw and each v
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(fol o [y Plfirs - fag) 1l [p(fz-j)dfz-j]> p(fur)
B P(d)
(fuw) (1= fun) ' ( 11 / (fij)7 (1 = fij)tijp(fij)dfij> P(fuv)
. ijF#uv JO
P(d)
(fuv)suv(l - fuv)tuv ( 1;[ E(Fijsij [1 - Fij]tij )) p(fuv)
HHEFSIJlf ]”)

1=1j5=1

(fuo)®™ (1 = fun)" p(fuv)
E(Fy5uv[l — Fyplter)

The first equality is due to Bayes’ Theorem, the second is due to the law of total
probability and the fact that the Fy;s are independent, the third is obtained by
applying Lemma 6.11 and rearranging terms, and the fourth is due to Theorem
6.11.

This proves the theorem.

Corollary 6.7 Suppose we have the conditions in Lemma 6.10 and each Fj;
has a beta distribution with parameters a;j,b;;, N;; = a;; +b;;. That is, for each
i and each j
p(fij) = beta(fij; aij, bij)-
Then
p(fijld) = beta(fij; aij + sij, bij + tij).
Proof. The proof follows immediately from Theorem 6.12 and Lemma 6.5.

Example 6.21 Suppose we have the binomial Bayesian network sample in Ex-
ample 6.20. Then since a;; = byj =1 for all © and j, and s11 = 3, t11 =5, sa1
=1, to1 = 2, S99 = 3, tao = 2, we have

p(fuild) = beta(fi1;1+ 3,14 5) = beta(f11;4,6)
p(f21|d) = bet(l(le; 1+1,1+ 2) = bet(l(le; 2, 3)
p(f22|d) = bet(l(fgg; 1+ 3, 1+ 2) = bet(l(fzg; 4, 3)

Recall Definition 6.12 says the augmented Bayesian network (G, F, p|d) is
called the updated augmented Bayesian network relative to the Bayesian net-
work sample and the data d, and the network it embeds is called the updated
embedded Bayesian network. The following example shows updated networks.
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Example 6.22 Given the binomial Bayesian network sample in Example 6.20),
the updated networks are the ones shown in Figures 6.22 (¢) and (d).

Recall that due to Theorem 6.10, the updated embedded Bayesian network
is the one used to do inference for the M + 1st case, and we do not show the
conditioning on D = d. That is, we simply use the updated embedded network
as always representing our current belief for the next case.

Example 6.23 As discussed in Example 6.22, given the binomial Bayesian net-
work sample in Example 6.20, the updated networks are the ones shown in Fig-
ures 6.22 (c) and (d). Therefore, due to Theorem 6.10, the network in Figure
6.22 (d) is the one used to do inference for the 9th case. For example, we
compute P(Xo = 1) for the 9th case as follows:

P(X,=1) = P(X,=1|X; =1)P(X; =1)+ P(X, = 1|X; = 2)P(X; = 2)
) ()()- o

Note in the previous example that we dropped the superscript and the
conditioning on D = d.

6.4.4 A Problem with Updating; Using an Equivalent Sam-
ple Size

Let’s compute P(X; = 1) using the original embedded Bayesian network in
Figure 6.22 (b). We have

- () 2)+ () ) ->

As shown in Example 6.23, after updating using the data in Table 6.2, we have
P(X5 =1) = .50286. (6.12)

Something may seem amiss. We initially had P(X5 = 1) equal to .5. Then we
updated our belief using a sample that had 4 occurrences in which X5 = 1 and
4 occurrences in which X; = 2, and our P(X5 = 1) changed to .50286. Even
if this seems odd, it is a mathematical consequence of assigning uniform prior
distributions to all three parameters. That is, if the situation being modeled is
the experiment discussed in Section 6.4.1 concerning the three urns in Figure
6.1.1, then this is the correct probability. It is correct in that if we repeated the
experiment of sampling coins and tossing them nine times, the probability in
Equality 6.12 is the relative frequency of the second coin landing heads when the
first eight tosses yield the data in Table 6.2. Although the coin tossing example
clearly illustrates a probability distribution of the value of a relative frequency,
it does not seem to be a good metaphor for applications. Rather it seems
more reasonable to use the metaphor which says our prior belief concerning
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beta(f,,;; 1,1) beta(f,,; 1,1) beta(f,,; 1,1) beta(f,; 2,4) beta(f,,; 3,3) beta(f,,; 5,5)

@ ©

P(X,=1X,=1)=12  P(X,=1)=1/2 P(X,=1[X,=1)=1/3  P(X,=1)=1/2
P(X, = 1|X, = 2) = 1/2 P(X, = 1|X, = 2) = 1/2

(b) (d)

Figure 6.23: An augmented Bayesian network is shown in (a) and its embedded
Bayesian network is in (b). Updated networks are shown in (c¢) and (d).

the relative frequency is obtained from a prior sample. That is, we take the
specified values of a;; and b;; as meaning our prior experience is equivalent to
having seen a sample in which the first value occurred a;; times in a;;+ b;; trials.
Given this, since F; has the beta(f11;1, 1) density function in Figure 6.22 (a),
our prior experience is equivalent to having seen X; take the value 1 once in
two trials. However, since Fy; also has the beta( f21;1,1) density function, our
prior experience is equivalent to having seen X, take the value 1 once out of
the two times X; took the value 1. Of course, this is not a very reasonable
representation of one’s prior belief. It happened because we have specified four
prior occurrences at node X5 (two in each beta density function), but only two
prior occurrences at node X;. As a result, we use mixed sample sizes in the
computation of P(Xy = 1). We therefore end up with strange results because
we do not cling to the originally specified probabilities at node X; as much as
the specifications at node X5 indicate we should.

Another problem arises for the same reason. Suppose we simply reverse
the arc between X; and X5, try again to specify prior indifference by using all
beta(f;1,1) density functions, and update using the data in Table 6.2. The
results are shown in Figure 6.23. As Figure 6.23 (d) shows, now after updating
we have

P(Xy;=1)=.5.

We see that our updated probabilities depend on which equivalent DAG we
use to represent the independencies. Recall that our assumption in a Bayesian
network sample is that we know the conditional independencies among the vari-
ables, and we are merely using the DAG to represent these independencies. So
our results should not depend on which equivalent DAG we use.
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beta(f,,; 2,2) beta(f,;; 1.1)  beta(f,,; 1,1) beta(f,,; 5,7) beta(f,; 2,3)  beta(f,,; 4,3)

@ ©

P(X,=1)=12 P(X,=1|X,=1)=1/2 P(X,=1)=5/12 P(X,=1|X,=1)=2/5
P(X, = 1X, = 2) = 1/2 P(X, = 1|X, = 2) = 417

(b) (d)

Figure 6.24: An augmented Bayesian network is in (a) and its embedded
Bayesian network is in (b). Updated networks are shown in (c¢) and (d).

Prior Equivalent Sample Size

It seems we could remedy these problems by specifying the same prior sample
size at each node. That is, given the network X; — X,, if we specify four
occurrences at Xo using two beta(f;1, 1) distributions, then we should specify
four occurrences at X using a beta(f;2,2) distribution?. Figure 6.24 shows the
result when we do this and subsequently update using the data in Table 6.2.
Let’s compute P(Xs = 1) using the updated network in Figure 6.24 (d).

o= (2) (2)- () (3) =

So now we get the value we would expect. Furthermore, if we reverse the arrow
between X; and Xs, specify a beta(f;2,2) density function at X5 and two
beta(f;1,1) density functions at X5, and update using the same data, we get
the updated network in Figure 6.25 (d). Clearly, in that network we also have

Indeed the entire updated joint distribution for the network with the edge Xo —
X7 is the same as that for the network with the edge X; — Xs. Example

41f our prior beliefs are based only on past cases with no missing data, then an equivalent
sample size models our prior beliefs, and this remedy to the noted problems seems appropriate.
However, if our prior beliefs come from different knowledge sources, it may not. For example,
our knowledge of the distribution of X; may be based on seeing X; = 1 once in two trials.
However, our knowledge of Xo = 1 given X; = 1 may be based on a distribution of some
population we read about in a research paper. In this case an equivalent sample size would
not model our prior beliefs. I thank Gregory Cooper for this observation.
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beta(f,;; 1,1) beta(f,;; 1,1) beta(f,;; 2,2) beta(f,;; 2,4) beta(f,;; 3,3) beta(f,,; 6,6)

P(X, = 1[X,= 1) = 1/2 P(X,=1)=1/2 P(X,=1[X,=1)=13  P(X,=1)=1/2
P(X, = 1X, = 2) = 1/2 P(X, = 1[X,=2) = 1/2

(b) (d)

Figure 6.25: An augmented Bayesian network is in (a) and its embedded
Bayesian network structure is in (b). Updated networks are shown in (c¢) and

(d).

6.29, which follows shortly, shows this. So the updated distribution now does
not depend on which equivalent DAG we use. This result is a special case of
Theorem 6.13, which we present shortly. First we need a definition.

Definition 6.13 Suppose we have a binomial augmented Bayesian network in
which the density functions are beta(fi;;aij, bij) for all i and j. If there is a
number N such that for all i and j

Nij = aij + bi; = P(pa;;) x N, (6.13)
then the network is said to have equivalent sample size N.

Recall in the case of a root, PA; is empty and ¢; = 1. So in this case,
P(pa;;) = 1. If a binomial augmented Bayesian network has n nodes and equiv-
alent sample size N, we have for 1 <i <n,

qi

2Nij => [P(pa;;) x N] = N x le(paij) =N.

j=1 j=1

The idea in an equivalent sample size is that we specify values of a;; and b,
that could actually occur in a sample that exhibit the conditional independencies
entailed by the DAG. Some examples follow:

Example 6.24 Figure 6.26 shows a binomial augmented Bayesian network with
an equivalent sample size of 15. We prove this is the case by showing FEquality
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beta(f,;; 10,5) beta(f,,; 9,6)

beta(f,;; 2,4) beta(f,,; 2,1)

@

P(X, = 1) = 2/3 P(X,=1)=3/5

P(X, = 1X, = 1,X, = 1) = 1/3
P(Xy = 1X, = 1,X, = 2) = 3/4

P(X,=1|X, =2X,=1)=2/3
P(X,= 1|X, =2,X,=2) = 1/2

(b)

Figure 6.26: A binomial augmented Bayesian network with an equivalent sample
size of 15 is in (a). It’s embedded network is in (b).

6.13 holds. To that end,
a1 +b;1 =10+5=15
P(pay,) x N = (1)(15) = 15
ag1 +b31 =2+4=6
2 3
P(pa31) XN:P(Xlil,Xgil) x N = <§> <g> 15 =6.
1t is left as an exercise to compute the remaining 4 pairs of values.

Example 6.25 Figure 6.20 shows a binomial augmented Bayesian network with
an equivalent sample size of 10. We prove this is the case by showing Equality
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6.13 holds. To that end,
&31+b31:2+1:3

P(pag;) x N

= P(Xo=1)xN

1 4 1 1
-GG+ () G)]xw0-2
It is left as an exercise to compute the remaining 4 pairs of values.

It is unlikely we would arrive at a network with an equivalent sample size
simply by making up values of a;; and b;;. The next two theorems give common
way for constructing one.

Theorem 6.13 Suppose we specify G, F, and N and assign for all i and j

N
aij = bij = 2—%
Then the resultant augmented Bayesian network has equivalent sample size N,
and the probability distribution in the resultant embedded Bayesian network is
uniform.
Proof. It is left as an exercise to show that with these specifications P(pa;;) =
1/q; for all values of i and j. Therefore,
N N 1
—+—=|—|) xN=P(pa;;) x N.
2q; N 2q; ( ) (pa;;)

aij + bij = 7
1

1t is also left as an exercise to show the probability distribution in the resultant
embedded Bayesian network is uniform. This proves the theorem.

Example 6.26 The specifications in the previous theorem simply spreads the
value of N evenly among all the values specified at a node. This is how the
networks in Figures 6.24 (a) and 6.25 (a) were developed.

Theorem 6.14 Suppose we specify G, F, N, a Bayesian network (G, P), and
assign for all i and j

aij = P(X; = 1|pa;;) x P(pa;;) x N
bij = P(X; = 2|pa;;) x P(pa;;) x N.

Then the resultant augmented Bayesian network has equivalent sample size N.
Furthermore, it embeds the originally specified Bayesian network.
Proof. Let P’ be the probability distribution in the resultant embedded network.
Clearly

A5 + bij = P(paij) x N.
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So if we can show P’ is the same distribution as P, FEquality 6.13 is satisfied
and we are done. To that end, due to Corollary 6.5, we have

(lij
(Iij + bij
P(X; = 1|paij) x P(pa;;) x N
P(pa;;) x N
= P(X; = 1[pa;).

P'(X; = 1|paij) =

This proves the theorem.

Example 6.27 If we specify the Bayesian network in Figure 6.26 (b), N =
15, and values of a;; and b;; according to the previous theorem, we obtain the
augmented network in Figure 6.26 (a). It is left as an exercise to do this.

After a definition, a lemma and an example, we prove the theorem to which
we alluded earlier. In what follows we need to refer to two augmented Bayesian
networks. So we show the dependence of F and p on G by representing an
augmented Bayesian network as (G, F(®), p|G). The notation p|G denotes the
density function in the augmented Bayesian network containing the DAG G. It
does not entail that the DAG G is an event.

Definition 6.14 Binomial augmented Bayesian networks (G1,F(©), p|G,) and
(Go, F(©2) p|Gy) are called equivalent if they satisfy the following:

1. Gy and Gy are Markov equivalent.

2. The probability distributions in their embedded Bayesian networks are the
same.

3. The specified density functions in both are beta.

4. They have the same equivalent sample size.

Lemma 6.12 (Likelihood Equivalence) Suppose we have two equivalent bi-
nomial augmented Bayesian network (G, F(G1) p|G1) and (G, F(G2),p|G2). Let
D be a set of random vectors as specified in Definition 6.11. Then for every set
d of values of the vectors in D,

P(dG1) = P(d|G2)

where P(d|Gy) and P(d|Gz) are the probabilities of d when D is considered a
binomial Bayesian network sample with parameters (G1, F(€1)) and (G, F(€2))
respectively.

Proof. The proof can be found in [Heckerman et al, 1995].
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Example 6.28 Let (G1,F(©1), p|Gy) be the augmented Bayesian networks in
Figures 6.24 (a) and (Gg,F(©2) p|Gy) be the one in Figure 6.25 (a). Clearly
they are equivalent. Given the data d in Table 6.2, we have due to Corollary 6.2

PG) = I(4) D(243)T(245) (2) DI41)r(142) I(2) D(143)I(142)
= \T@E+s) T T(2+3)  L()I(1) T(2+5) TD(I(1)

= 3.6075 x 107°.
P(d|Gy) = ( r'(4) F(2+4)F(2+4)) ( r(2) F(1+2)F(1+2)) ( r(2) F(1+3)F(1+1))
2 T(A+8)  T(2)T(2) T(2+4) (1) T(2+4) (M)

= 3.6075 x 107°.

The values are the same as the lemma implies. It is left as an exercise to show
they are not the same for the networks in Figures 6.22 (a) and 6.23 (a).

Theorem 6.15 Suppose we have two equivalent binomial augmented Bayesian
networks (G1,F(©), p|G1) and (Gz,F(©2) p|Gy). Let D be a set of random vec-
tors as specified in Definition 6.11. Then given any set d of values of the vectors
in D, the updated embedded Bayesian network relative to D and the data d, 0b-
tained by considering D a binomial Bayesian network sample with parameter
(G, F(Gl)), contains the same probability distribution as the one obtained by
considering D a binomial Bayesian network sample with parameter (Ga, F(G2)).
Proof. We have

P(d, (M+1) |G
P, G) = PO 5<d|<c7>l :
1
P(d,x(M+1D|Gy)
P(d|Gy)

= P(xM*|d,G,).

The second equality is because Lemma 6.12 implies the values in the numerators
and denominators are the same. Since Theorem 6.10 says P(xM+D|d, G;) is
the probability distribution contained in the updated embedded Bayesian network
relative to D and the data d, the theorem is proven.

Corollary 6.8 Suppose we have two equivalent binomial augmented Bayesian
networks (G, F(1) p|Gy) and (Gq, F©2) p|Gy). Then given any set d of val-
ues of the vectors in D, the updated embedded Bayesian network relative to D
and the data d, obtained by considering D a binomial Bayesian network sample
with parameter (G, F(Gl)), is equivalent to the one obtained by considering D a
binomial Bayesian network sample with parameter (Go, F(G2)).

Proof. The proof follows easily from the preceding theorem.

Example 6.29 Consider augmented Bayesian networks discussed in Example
6.28 and their updated embedded Bayesian networks which appear in Figures
6.24 (d) and 6.25 (d). For the one in Figure 6.2/ (d), we have

2 5
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For the one in Figure 6.25 (d), we have

P(X;=1,Xos=1)= (é) G) = . 16667.

The values are the same as the theorem implies. It is left as an exercise to check
the other 3 wvalues.

Due to the preceding theorem, as long as we use an equivalent sample size,
our updated probability distribution does not depend on which equivalent DAG
we use to represent a set of conditional independencies. So henceforth we will
always use an equivalent sample size.

Expressing Prior Indifference with a Prior Equivalent Sample Size

Recall from Section 6.2.2 that we take a = b = 1 when we feel all numbers in
[0,1] equally likely to be the relative frequency with which the random variable
assumes each of its values. We use these values when we feel we have no knowl-
edge at all concerning the value of the relative frequency, and also to try to
achieve objectivity in the sense that we impose none of our beliefs concerning
the relative frequency on the learning algorithm. We tried doing this with the
specifications in the augmented Bayesian network in Figure 6.22 (a), and ended
up with unacceptable results. We eliminated these unacceptable results by us-
ing the network with an equivalent sample size in Figure 6.24 (a). However,
in that network, we no longer assign equal density to all possible values of the
relative frequency with which X; = 1. By the mere fact of including X; in a
network with X5, we have become more confident that the relative frequency
with which X7 equals 1 is around .5! So what equivalent sample size should we
use to express prior indifference? We can shed light on this question by looking
again at the two equivalent DAGs X; — X5 and Xy — X;. If we used the
former DAG, we would want to specify a beta(f11;1,1) density function for Fy;.
That is, we would want to use a prior sample size of two at node X;. If we
merely reverse the arrows, it seems there is no reason we should change that
sample size. So it seems we should still use a prior sample size of two at X7,
only now we must spread it over two density functions, namely beta(f11;.5,.5)
and beta( f12;.5,.5). In general, it seems a good way to express prior indifference
is to use an equivalent sample size of two, and for each node to distribute the
sample evenly among all specified values. In this way, the total ‘sample’ size
at each node is always two, even though for non-roots the specified ones are
fractional. Figure 6.27 shows an example.

Our Beliefs When Using a Prior Equivalent Sample Size

At the end of Section 6.4.2, we mentioned that the assumption when using
an augmented Bayesian network is that the variables representing our belief
concerning a relative frequencies are independent. However, when we use dif-
ferent equivalent binomial augmented Bayesian network, different variables are
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beta(f,;; 1,1) beta(f,,; 1,1)

beta(f;,; .25,.25) beta(f,,; .25,.25)

Figure 6.27: We express prior indifference to the values of all relative frequencies
using a prior equivalent sample size of two.

assumed to be independent. For example, in Figure 6.24, it is assumed that the
variable representing our belief concerning the relative frequency with which
Xy = 1 given X; = 1 is independent of the variable representing our belief
concerning the relative frequency with which Xy = 1 given X; = 2. However,
in Figure 6.25, it is assumed that the variable whose probability distribution
represents our belief concerning the relative frequency with which X; = 1 given
X5 =1 1is independent of the variable whose probability distribution represents
our belief concerning the relative frequency with which X7 = 1 given Xy = 2.
As we have seen, all our results are the same as long as we use equivalent bino-
mial Bayesian networks. So perhaps our assumptions should be stated relative
to using equivalent augmented Bayesian networks rather than a particular one.
We could state this as follows: Given a repeatable experiment whose outcome
determines the state of n random variables, the assumption, when using a bino-
mial augmented Bayesian network, is that our belief, concerning the probability
of the outcome of repeated executions of the experiment, is entailed by any
augmented Bayesian network equivalent to the one used.

6.5 Learning with Missing Data Items
So far we have considered data sets in which every value of every variable is

recorded in every case. Next we consider the case where some data items might
be omitted. How might they be omitted? A common way, and indeed a way
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beta(f,;; 2,2) beta(f,;; 1,1) beta(f,,; 1,1)  beta(f,;; 6,3)  beta(f,; 7/2,5/2)  beta(f,,; 3/2,3/2)

@ ©

P(X,=1)=1/2 P(X,=1[X,=1)=1/2 P(X,=1)=2/3 P(X,=1|X,=1)=7/12
P(X,=1|X, =2) = 1/2 P(X,=1|X, =2)=1/2

(b) (d)

Figure 6.28: The network in (a) has been updated to the network in (c¢) using
a first pass of the EM Algorithm.

Case | X7 | X5
1 1 1
2 1 1
3 1 1
4 1 2
5 2 2

Table 6.3: Data on 5 cases

that is relatively easy to handle, is that they are simply random omissions due
to recording problems or some similar error. First we discuss this case.

6.5.1 Data Items Missing at Random

Suppose data items are missing at random. Before discussing how to update
based on such data, let’s review how we update when no data items are missing.
Suppose we want to update the network in Figure 6.28 (a) with the data d in
Table 6.3. Recall that ss; is the number of cases that have X equal to 1 and
X5 equal to 1, while to7 is the number of cases that have X7 equal to 1 and X,
equal to 2. So we have
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Case

[\DHHHHN
=
0RO = 0 | e
(v}

T LN

Table 6.4: Data on 5 cases with some data items missing

Case | X7 | Xo | # Occurences
1 1 1 1
2 1 1 1/2
2 1 2 1/2
3 1 1 1
4 1 2 1
5 2 1 1/2
5 2 2 1/2

Table 6.5: Estimates of missing values

Owing to Corollary 6.7,
p(f21d)

beta(fa1; ao1 + sa21,bo1 + ta1)
bet(l(le; 1+ 3, 1+ 1)
beta(f21;4, 2)

Suppose next that we want to update the network in Figure 6.28 (a) with
the data d in Table 6.4. These data contain missing data items. We do not know
the value of X5 for cases 2 and 5. It seems reasonable to ‘estimate’ the value
of X5 in these cases using P(Xy = 1|X; = 1). That is, since this probability
equals 1/2, we say Xs has a 1/2 occurrence of 1 in each of cases 2 and 5. So
we replace the data d in Table 6.4 by the data d’ in Table 6.5. We then update
our density functions using the number of occurrences listed in Table 6.5. So

we have

!
S21
!
91

(6.14)

—_ N
+
I
rolon

vl =

1+
_ 1
5+

Sho (6.15)

/
t22 -

NI

where s5,, thy, shy, and thydenote the counts in data d’ (shown in Table 6.5).

We then have
p(far]d")

bet(l(fgl; as1 + 8121, boy + t/21)
beta (fgl; 1+ %, 1+ %)
beta (f21; %a %) .
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and

p(fa2ld") = beta(for;ans + shy, baz + o)
= bet&(f21,1+%,1+%)
= beta (fgl;%,%).

The updated network is shown in Figure 6.28 (c).

If we consider s;; and t;; random variables, the method just outlined esti-
mates the actual values of s;; and ¢;; by their expected values relative to the
joint distribution of Xjand X, conditional on the data and on the variables in
F having their prior expected values. That is, if we set

' = {fi1, fa1, fao} = {11, for, fao} = {1/2,1/2,1/2}

(The reason for defining ' will become clear shortly.), then

5
shy = B(sy|d,f) = Y 1xP(x{" =1,x{" =1/d,f) (6.16)

h=1

5
= Y P =1,x{" = 1x™,)

h=1

5
= S P =1,x{" = 12" =" )
h=1
= 1+3++1+0+0=3.

Similarly,
thy = B(tar|d,f) =0+ 1 +0+1+0=2.
Furthermore,
5
8122 = E($22|daf/) - Z 1 x P(Xl(h) = 1,X§h) — 2|d,f/)
h=1
5
= ZP(XYL) _ 1,X2(h) _ 2|X(h),f/)
h=1
5
_ ZP(XYL) _ 1,X2(h) _ 2|xgh),$gh),f/)
h=1
= 0+04+04+0+4=13
and

tho = E(taa|d,f) =0+0+0+0+4 =1.

Note that these are the same values obtained in Equalities 6.14 and 6.15.
Using these expected values to estimate our density functions seems reason-
able. However, note that our estimates are based only on the ‘data’ in our prior
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sample. They are not based on the data d. That is, we say X2 has a 1/2 occur-
rence of 1 in each of cases 2 and 5 because P(X, = 1|X; = 1) = 1/2 according
to our prior sample. However, the data d ‘prefers’ the event X; =1, Xy =1 to
the event X7 = 1, X5 = 2 because the former event occurs twice while the latter
event occurs only once. To incorporate the data d in our estimates we can now
repeat the computation in Expression 6.16 using the probability distribution in
the updated network (Figures 6.28 (c¢) and (d)). That is, we now set

f' = {filafélaféZ} = {2/3a7/12a 1/2}

and compute

5
8121 = E($21|daf/) = Z 1% P(th) = 15X§h) - 1|daf/)

h=1

5
= P =1 x{ = 1x®. )

h=1

5
= Y P =1,xY =1, 2 F)
h=1
= 1+5+14+0+0=2%.

Similarly,
thy = E(txn|d,f) =0+ 2 +0+1+0=12.

We re-compute sh, and th, in the same manner.
Clearly, we can keep repeating the previous two steps. Suppose we reiterate
these steps, let sg) and tg;) be the values of sgj and tgj after the vth iteration,

and take the

(v)
Q;; + 8;;
lim f/; = lim (j) . (6.17)
e T ag +siy0 b+t
Then under certain regularity conditions, the limit which is approached by
" = {fir,- - fijs- - fng,} is a value of f that locally maximizes p(f|d)”.

The procedure we have just described is an application of the EM Algorithm
([Dempster et al, 1977], [McLachlan and Krishnan, 1997]). In this algorithm,
the step in which we recompute s;; and #}; is called the expectation step,
and the step in which we recompute the value of f’ is called the maximization
step because we are approaching a local maximum.

The value f which maximizes p(f|d) is called the maximum a posterior
probability (MAP) value of f. We want to arrive at this value rather than at
a local maximum. After presenting the algorithm, we discuss a way to avoid a
local maximum.

5The maximizing values actually depend on the coordinate systems used to express the pa-
rameters. The ones given here correspond to the canonical coordinate system for the multino-
mial distribution (See e.g. [Bernardo and Smith, 1994].).
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Algomthm 6.1 EM-MAP-determination

Problem: Given a binomial augmented Bayesian network in which the density
functions are beta, and data d containing some incomplete data items,
estimate p(f|d) and the MAP value of the parameter set f.

Inputs: binomial augmented Bayesian network (G, F, p) and data d containing
some incomplete data items.

Outputs: estimate p(f|d’) of p(f|d) and estimate f' of the MAP value of the
parameter set f.

void EM MAP (augmented-Bayesian-network (G, F, p),
data d,
int k, // number of
density-fuction& p(f|d’), // iterations
MAP-estimate& f')

{

float s;;, t}; ;
for (i = 1;1 <=n;i+ +)
for (j =1,j <=q;j++)
assign f;; a value in the interval (0, 1);
repeat (k times) {
for i=1;i<=n;i++) // expectation
for (j = 1;j <=qi;j ++) { // step
s;j = E(sij|d,f') = ;7\,/121 P(Xi(h) =1, Paij|x(h)af/);
tiy = E(tij|d, ' = ;7\,/121 P(Xi(h) =2, Paij|x(h)af/);

for (i =1;i <=n;i++) // maximiza-
for (j =1;j <=qi;j ++) // tion step
, Qjj Jrs;j

Y aij + ng + by + t;j ’

p(fijld") = beta( fij; aij + si5, bij +13;);

Note that in the algorithm we initialized the algorithm by saying “assign i’j
a value in the interval (0, 1)” rather than setting fi; = ai;/ (aij + bij) as we did
in our illustration. We want to end up with the MAP value f of f; however in
general we could end up with a local maximum when starting with any particular
configuration of f'. So we do not start at only one particular configuration.



6.5. LEARNING WITH MISSING DATA ITEMS 363

Rather we use multiple restarts of the algorithm. The following is a multiple-
restart strategy discussed in [Chickering and Heckerman, 1997]. We sample 64
prior configurations of the variables in F according to a uniform distribution. By
a configuration of the variables we mean an assignment of values to the variables.
Next we perform one expectation and one maximization step, and we retain the
32 initial configurations that yielded the 32 values of f’ with the largest values
of p(f’|d). Then we perform two expectation and maximization steps, and we
retain 16 initial configurations using this same rule. We continue in this manner,
in each iteration doubling the number of expectation-maximization steps, until
only one configuration remains. You may wonder how we could determine which
values of f’ had the largest values of p(f'|d) when we do not know this density
function. For any value of f we have

p(fld) = ap(d|f)p(f),

which means we can determine whether p(f’|d) or p(f”|d) is larger by compar-
ing p(d|f")p(f") and p(d|f”)p(f"”). To compute p(d|f)p(f), we simply calculate
p(f) and determine p(d|f) = ny:l P(xM|f) using a Bayesian network inference
algorithm.

The maximum likelihood (ML) value f of f is the value such that P(d|f)
is a maximum (Recall we introduced this value in Section 4.2.1.). Algorithm
6.1 can be modified to produce the ML value. We simply update as follows:

Sl

flo=—"4
1,

/ 7"
8 T U

A parameterized EM algorithm, which has faster convergence, is discussed
in [Bauer et al, 1997]. The EM Algorithm is not the only method for handling
missing data items. Other methods include Monte Carlo techniques, in partic-
ular Gibb’s sampling, which is discussed in Section 8.3.1.

6.5.2 Data Items Missing Not at Random

The method we outlined in the previous subsection is only appropriate when the
absence of a data item does not depend on the states (values) of other variables.
This is true if the data items are missing at random. It is also true if a variable
is never observed in any cases. However, there are situations where missing data
is not independent of state. For example, in a drug study a patient may become
too sick, due to a side effect of the drug, to complete the study. So the fact that
the result variable is missing depends directly on the value of the side effect vari-
able. [Cooper, 1995a], [Spirtes et al, 1995], and [Ramoni and Sebastiani, 1999]
discuss handling this more complicated situation.
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beta(f,;; 4,3) beta(f,;; 3,1) beta(f,,; 2,1)
(a)
beta(f ;; 3,2) beta(f,,; 1,1) beta(f,,; 5,2)

(b)
Figure 6.29: E(F},) = 3/10 regardless of which network we use to compute it.

6.6 Variances in Computed Relative Frequen-
cies

Next we discuss how to compute the uncertainty (variance) in a relative fre-
quency for which we have not directly assessed a belief. Rather the relative
frequency estimate is computed from ones for which we have assessed beliefs.

For the sake of space and notational simplicity, in this section we will again
represent variables by unsubscripted letters like X, Y, and Z, and values of
those variables by small letters. For example, the values of X will be 1 and
2.

6.6.1 A Simple Variance Determination

Consider the Bayesian network in Figure 6.29 (a). The probability distribu-
tion of the random variable F}; represents our belief concerning the relative
frequency with which x1 occurs, the probability distribution of Fb; represents
our belief concerning the relative frequency with which Y takes the value yl
given that X = x1, and the probability distribution of Fby represents our belief
concerning the relative frequency with which Y takes the value yl given that
X = x2. Consider now the space determined by the joint distribution of the
Fjjs. We assume our belief concerning the relative frequency with which Y takes
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the value y1 is represented by the random variable Fy; which assigns
P(yl|f)

to each set of values f = {f11, fa1, fa2} of the variables in F = {Fyq, Fy, Fas},
and our estimate of the relative frequency is E(F),;). Note that this is consistent
with Equality 6.1 in Section 6.1.1. We have

P(yllf) = Pyl f)P(z1|f) + P(yl|a2,f)P(x2|f)
= farfir + foo(1 = f11).
The second equality is due to Equality 6.7. Therefore,
Fyl = Fy1 Fyq +F22(17F11). (618)

In Section 6.3 we showed how to compute probability intervals for the Fj;s,
but how can we obtain such an interval for Fy;7? Next we prove two theorems
which enable us to compute the variance V(Fy1), from which we can at least
approximate such an interval using a normal approximation.

Theorem 6.16 Suppose F' has the beta(f;a,b) density function. Then

E(#) = aib
B(F?) = (aiZiJ (aib)
E(F[1 - F)) = ab

(a+b+1)(a+b)
Proof. The proof is left as an exercise.

Theorem 6.17 Suppose the random variable Fy1 is defined as in Expression
6.18, and the Fi;s are mutually independent. Then

E(Fy1) = E(Fo1)E(Fi1) + E(Fa)E(1 — Fi1)

E(F}) = E(F5)E(F})+2E(Fo)E(Fa)E(Fii[1 — Fi1])
+E(F3)E([1 — Ful?).

Proof. The proof is left as an exercise. B

Example 6.30 Let’s now compute V(Fy1) for the network in Figure 6.29. Due
to Theorem 6.16,

E(Fn) = E(1 - Fi1) = BE(Fa) = E(Fy2) = ?11 — é
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E(F2) =EB(1 - F,]%) = (ﬁ;il) <2i2) B 1%

141 1 1
B(F3) = B(F3) = <1+1+1) <1+1) 3

e 1
EFull-Fu) = o5 @12 ~ 5

Therefore, due to Theorem 6.17,

E(F,)) = E(Fn)B(Fi)+ E(Fp)E(1 - Fy)
SUICROIOR
E(F})) = E(F3)E(FR)+ 2E(Fy )E(Fy)E(Fi[l — Fil)
+E(FR)E([L - Ful?)
- (3)60) =266 6E)6)6E) -
So we have

V(Ep) = B(FA) ~ () = = - (1) _ 05,

6.6.2 The Variance and Equivalent Sample Size

We introduce this subsection with an example.

Example 6.31 Consider the augmented Bayesian network in Figure 6.29 (b).
1t is equivalent to the one in Figure 6.29 (a). Therefore, intuitively we would
expect E(F;l) would be the same when computed using either network. Since
clearly in that network Fy1 = Fyi, we have due to Theorem 6.16 that

241 2 3
EF2 EF2
(Fy1) = B(Fz) <2+2+1) <2+2) 10°

which is the same as the value obtained using Figure 6.29 (a). It is left as an
exercise to show the expected values are also equal, which means the variances
are equal.

It is also left as an exercise to show that E(F;l) is not the same for the
networks in Figures 6.29 (a) and (b) if we specify all beta(f;1,1) density func-
tions in both networks. Is there a theorem concerning equivalent sample sizes
and variances corresponding to Theorem 7.107 That is, is a variance the same
when computed using two equivalent augmented Bayesian networks? Although
we have no proof of this, we conjecture it is true. Before formally stating this
conjecture, we investigate more examples which substantiate it. We will only
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compare the expected values of squares of our random variables since, if they
are equal, the variances are equal. The reason is that the expected values of our
random variables are always equal to the corresponding probabilities. Before
giving a theorem to this effect, we motivate the theorem with two examples.

Example 6.32 Consider a two-node network such as the one in Figure 6.29
(a). Let Fy1 be a random variable which assigns P(yl|f) to each set of values f
of the variables in F. We have due to the law of total probability

E(F,) = / P(y1[)p(F)df
= P(yl).

Example 6.33 Consider again a two-node network such as the one in Figure
6.29 (a). Let Fyip1 be a random variable which assigns P(x1|yl,f) to each set
of values f of the variables in F. We have

E(Fanli) = [ Pyt Dp(rly)ar
= P(xl|yl).
The second equality is due to the law of total probability.
The method in the previous examples can be used to prove a theorem.

Theorem 6.18 Let a binomial augmented Bayesian network be given, and let
A and B be two disjoint subsets of V and a and b be values of the variables in
these sets. Let Fyp be a random variable which assigns P(alb,f) to each set of
values f of the variables in F. Then

E(F,jp|b) = P(alb).
Proof. We have

E(Ewlb) = [ Plb (o)t
f
= P(alb).
The second equality is due to the law of total probability.

Since P(a|b) is the same for equivalent augmented Bayesian networks, the
preceding theorem implies the variances are the same whenever the expected
values of the squares of the random variables are the same. We now give more
examples comparing these expected values for equivalent augmented Bayesian
networks.

Example 6.34 Consider the augmented Bayesian networks in Figure 6.30 (a)
and (b).Clearly they are equivalent. For the network in (a) we have, due to

Theorem 6.16, that
3 3
B(Fy)=—— =2
e
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beta(f,;; 2,2) beta(f,;; 1,1) beta(f,,; 1,1)

& & &
CO——)

@

beta(f,;; 1,1)  beta(f,,; 1,1) beta(f,,; 2,2)

& & G
)

(b)

Figure 6.30: E(F};) = 15/28 regardless of which network we use to compute it.

B(F) = 5or =3
oy [ A+1 4\ 5
B 11)<4+3+1> <4+3>14
oy [ 3+1 3.\ 3
E( 21)<3+1+1> <3+1>5
oy [ 241 2\ 1
E(F22)<2+1+1> <2+1>2
3+1 3 3
Bt = Ful’) <4+3+1><4+3>1_4
_ (4)(3) _ 3
E(F”[I*F“])’(4+3+1)(4+3)’14
Therefore, due to Theorem 6.17,
E(Fy21) = E(F3)E(F}) + 2E(Fan)E(Fs)E(Fi1 [1 — Fi1))

+E(F3)E([1 — Ful?)

OE-O0E-0e-2
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For the network in (b) we have, due to Theorem 6.16, that

E(Fjl)E(F§1)< i1 )( > )9

o+2+1 5+2 28

The following theorem gives a formula for the expected value of the square
of the random variable. We will use the formula in several examples.

Theorem 6.19 Let a binomial augmented Bayesian network be given, and let
A and B be two disjoint subsets of V, and a and b be values of the variables in
these sets. Let F,, be a random variable which assigns P(alb,f) to each set of
values f of the variables in F. Then

5 1 P(bla,f))?[P(alf)]?
B3 = g [P st

Proof. We have

E(F2,b) = /f[P<a|b,f>]2p<f|b>df

_ /[P(bla,1‘)]2[11’(alf)]2 Pblf)p(f) .
f [P(b]f)]? P(b)

1 [ [PObaDRPEA?
- P(b)/f Pl PO

Example 6.35 Consider the network in Figure 6.29 (a). Let Fyq),1 be a ran-
dom wvariable which assigns P(x1|yl,f) to each set of values f of the variables
in F. Due to the preceding theorem, we have

B lt) = s [P gt

- 1/2///f21f114{2}22111f11)

beta f11,2 2)b€t(l(f21, 1 1)b€t(l(f22, )dflldfgldfgz
1

3

The integration was performed using the mathematics package Maple.

Consider next the augmented Bayesian network in Figure 6.29 (b), which is
equivalent to the one in (a). Due to the fact that Fyy is independent of Y and
Theorem 6.16, we have

141 1 1
E(F2 1) = E(F?) = =3

which is the same as the value above.
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Example 6.36 Consider the network in Figure 6.30 (a). Let Fyy),1 and Ey,
be as in the preceding example. Due to Theorem 6.19, we have

B i) = pragy [ O )t

- 5/7/ / / leflljz}iulfu)

beta f11,4 3)b€t(l(f21, 3 1)b€t(l(f22,2 1)df11df21df22
2

5

The integration was performed using Maple.
Consider next the augmented Bayesian network in Figure 6.30 (b), which is

equivalent sample to the one in (a). Due to the fact that Fyy is independent of
Y and Theorem 6.16, we have

3+1 3 2
2 - 2y — =z
E(Fjlyl) = B(F) = <3+2+ 1) <3+2> T 5

which is the same as the value above.

Example 6.37 Consider the augmented Bayesian network in Figure 6.31 (a).
Let Fy1jz1,.1 be a random variable which assigns P(yl|xl, 21,f) to each set of
values f of the variables in F. Due to Theorem 6.19, we have

E(F;Hm’zﬁxl,zl)

L [Pl L OPPI

P(z1,21) P(x1, z1|f)
_ 1 [P(x1, 21|y1,f)]?[P(y1]f)]?
B P(xl,zl)/P(xl,zllyl,f)P(yllf)+P(xl,z1|y2,f)P(y2|f)p(f)df
_ 1 [P(A[y1f) P[P(y1]x1, f)]* P(a1[f)
- P(xl,21) / P(z1|y1,f)P(yllxl,f) + P(z1|y2,f) P (y2|;1;1,f)p(f)df

- [ 3 m . .
; 1/4/ / / / fa1fa1 + faaf 1,f21)b€t&(f11,1,1)beta(f21,1,1)

beta(fs1;1, 1)beta(fsg; 1, 1)df11dfa1df31dfss
= .36.

The third equality is obtained by exploiting the fact that X and Z are indepen-
dent conditional on Y, using Bayes’ Theorem, and doing some manipulations.
The integration was performed using Maple.

Consider next the augmented Bayesian network in Figure 6.31 (b), which is
equivalent to the one in (a). Due to Theorem 6.19, we have
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beta(f,;; 2,2) beta(f,;; 1,1)  beta(f,,; 1,1) beta(f,;; 1,1) beta(f,,;

% XL

beta(f,,; 2,2)

beta(f,;; 1,1) beta(f,,; 1,1)

beta(f,,; 1,1) beta(f,,; 1,1)

(b)

Figure 6.31: E(F?

s1ja1,21/21,21) = .36 regardless of which network we use to
compute it.
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E(F2

yllzl,z1

_ 1 [P(x1, leyl AP [PyLH)]?
- P(xl,21) / P(x1, 21]f) plf)df

- [ 13 fh )
; 1/4/////f21f31f11+f22f32(1—fu)bem(f”’2’2)

beta f21, 1, 1)b€t(l fgz, 1 1)b€t(l(f31, 1, 1)b€t(l(f32, )dflldfgldfggdfgldfgz
= .36,

|1, 21)

which is the same as the value above. The integration was performed using
Maple.

Due to the preceding examples, we offer the following conjecture:

Conjecture 6.1 Suppose we have two equivalent binomial augmented Bayesian
network (G1,F1,py) and (G, Fa, py). Let A and B be two disjoint subsets of V,
and a and b be values of the variables in these sets. Furthermore, let Fy 4, be a
random variable which assigns P(alb,f1) to each set of values f1 of the variables
in F1, and let F5 4, be a random variable which assigns P(alb,f2) to each set of
values fy of the variables in Fy. Then

E(F?, p|b) = E(F3,|b).

Perhaps a proof technique, similar to the one in [Heckerman et al, 1995],
could be used to prove this conjecture.

6.6.3 Computing Variances in Larger Networks

So far we have computed variances involving only nodes that are touching each
other. Next we show how to compute variances in larger networks. We start
with an example.

Example 6.38 Consider the augmented Bayesian network in Figure 6.31 (a).
We already know how to compute E(F})) and E(F},). Let’s compute E(FZ).
We have

P(21[f) = P(z1[y1, f) P(y1[f) + P(z1]y2,f) P(y2[f)
Therefore
This expression is like Expression 6.18 except Fy1 replaces F,,. So once we
determine E(F},), E(Fy1), E([1 — Fu]?), and E(Fy1[1 — F,1]?), we can apply
the method in Ezample 6.30 to compute E(F2). From Ezample 6.30, we have
3 1
2
E(F;) = 0 E(F) = 2

Due to symmetry
3

E(L- Fal) = 15



6.6. VARIANCES IN COMPUTED RELATIVE FREQUENCIES 373

Finally, We have

E(F [l = Fa)?) = E([Fa1Fi1+ Fao{l — Fi1}]|[1 — Fo1 Fi1 — Foo {1 — F11}])
1

5
The previous answer is obtained by multiplying out the expression on the right
and applying Theorem 6.16.
Note that all the values obtained above are exactly the ones that would be the
case if Fyy1 had the beta(f1;2,2) density function. Therefore, due to the result

in Example 6.30,

3
E(F?%) =—
( zl) 105

which would be the value obtained if F,, had the beta(f31;2,2) density function.

The result in the previous example is not surprising since, if we took the
equivalent DAG that had the arrows reversed and used the same equivalent
sample size, F,1 would have the beta( f21;2,2) density function. So the result is
consistent with Conjecture 6.1.

The previous example gives us insight as to how we can compute all prior
variances in a linked list. Starting from the root, at each node X, we compute
E(F2), E(Fu1), E([1— F1)?), and E(F,1[1 — F,1]?) from information obtained
from the node above it and from the distributions of the auxiliary parent nodes
of X. Neapolitan and Kenevan [1990, 1991] extend this method to singly-
connected networks, and give a message-passing algorithm for computing all
prior variances in such networks. The algorithm is similar to the one discussed
in Section 3.2.2. They also show how to use Pearl’s ([Pearl, 1988]) method of
clustering to handle networks that are not singly-connected networks.

The problem of computing variances conditional on instantiated variables is
more difficult. Clearly, if an ancestor of a node is instantiated, the message-
passing algorithm described above can be used to compute the conditional vari-
ance. However, if a descendent is instantiated, we must cope with the integral in
Theorem 6.19. Che et al [1993] discuss using numerical methods to approximate
this integral.

6.6.4 'When Do Variances Become Large?

Intuitively, we would expect the variance, in the random variable, whose possi-
ble values are a given conditional probability, could increase with the number
of instantiated variables relevant to the computation of that conditional prob-
ability. The reason is that, as more variables are instantiated, the number of
cases in the equivalent sample that have those instantiated values decreases.
For example, in Figure 6.32, all 80 cases enter into the determination of P(yl).
However, only 5 cases have X, Z, W, and U instantiated for x1, z1, w1, and u1.
Therefore, only 5 cases enter into the determination of P(y1l|z1,21,wl,ul). The
following table shows variances and 95% probability intervals given the network
in Figure 6.32:
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beta(f,;; 40,40) beta(f,;; 40,40) beta(f,;; 40,40) beta(f,,; 40,40)

forl#j# 16
beta(fsj; 2.5,2.5)

Figure 6.32: An augmented Bayesian network used to illustrate loss in confi-
dence as variables are instantiated. Only the density functions for the auxiliary
variables are shown.

Random Variable | Expected Value | Variance | 95% Probability Interval
Fy b .003 (.391, .609)
Fyile1.21,w1,u1 b .042 (.123,.877)

Even though the expected value of the relative frequency with which ¥ = y1
remains at .5 when we instantiate Y’s four parents, our confidence that it is .5
practically disappears.

When probabilities are nearly 1, we do not have as severe of a problem
concerning loss of confidence. The following theorem shows why.

Theorem 6.20 Let F' be a random variable whose values range between 0 and
1. Then

V(F) < E(F)[1 - E(F)].
Proof. We have

V(F) = E(F?)-I[E(F)

IAINA

The second first inequality is because 0 < f < 1 implies f < f2.
Example 6.39 Suppose E(F) =.999. Then due to the preceding theorem,

V(F) < .999(1 — .999) = .000999.
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beta(f,;; 40,40)  beta(f,,; 40,40) beta(f,,; 40,40) beta(f,;; 40,40)

11

forl#j# 16

beta(fsj; 4.5,.5)

Figure 6.33: An augmented network used to illustrate loss in confidence as
variables are instantiated. Only the density functions for the auxiliary variables
are shown.

Using the normal approximation, we obtain that a 95% probability interval is
contained in

(.937,1.061).

Of course, F' cannot exceed 1. This is only an approximation.

So regardless of how many variables are instantiated, if the conditional prob-
ability (expected value of the relative frequency) is .999, we can be confident the
actual relative frequency really is high. Intuitively, the reason is that a relative
frequency estimate of .999 could not be based on a small sample.

However, if the probability is high but not extreme, we can lose a good deal
of confidence when we instantiate variables. Given the network in Figure 6.33,
we have the following variances and probability intervals:

Random Variable | Expected Value | Variance | 95% Probability Interval
Fyy .9 .001 (.836,.964)
Fyila1 21,010 .9 .015 (.639,1)

Note that, when Y’s four parents are instantiated, we are no longer confident
that the relative frequency with which Y = y1 is high, even though the expected
value of the relative frequency stays at .9.

When variables are instantiated from above, as in the previous illustrations,
it is no surprise that the confidence becomes low because the confidence in
specified relative frequencies was low to begin with. However, when variables
are instantiated from below this is not the case. Consider the network in Figure
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6.31 (b). As shown in Example 6.37, E(F?

yllzl,z

1]x1, 21) = .36. Therefore,

V(Fyllml,zllxla Zl) = E(F21|m1,z1|x1a Zl) - [E(Fyllml,zllxla Zl)]2

Yy
= .36 —(.5)% = .11

Yet the specified relative frequencies (i.e. Fi; and F3;), in which we have least
confidence, have the beta(f;1,1) density function. So we have

V(Fy) = V(Fs;) = .333 — (.5)? = .083.

So even though E(Fy1|m1721|:1:1,zl) is the same as the expected values of all
relative frequencies specified in the network (namely .5), its variance is greater
than any of their variances. It seems then that determination of variances may
be quite important when variables are instantiated from below. In this case,
we cannot assume that our confidence in specified relative frequencies gives
us a bound on our confidence in inferred ones. On the other hand, Henrion
et al [1996] note that diagnosis using Bayesian networks is often insensitive to
imprecision in probabilities. One reason they site is that gold-standard posterior
probabilities are often near zero or one, and, as we noted above, in the case of
extreme probabilities, the variance is always small.

EXERCISES

Section 6.1

Exercise 6.1 For some two-outcome experiment, which you can repeat indefi-
nitely (such as the tossing of a thumbtack), determine the number of occurrences
a and b, of each outcome, that you feel your prior experience is equivalent to
having seen. Then represent your belief concerning the relative frequency with
the beta(f;a,b) density function. Finally determine the probability of the first
value occurring.

Exercise 6.2 Assume I feel my prior experience concerning the relative fre-
quency of smokers in a particular bar is equivalent to having seen 14 smokers
and 6 non-smokers. So I represent my beliefs concerning the relative frequency
of smokers using the beta(f;14,6) density function. Suppose I then decide to log
whether or not individuals smoke. Compute the probability of my getting these
data:

{1,2,2,2,2,1,2,2,2,1},

where 1 means the individual smokes and 2 means the individual does not smoke.
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Exercise 6.3 Assuming the beliefs in Fxercise 6.2, what is the probability the
first individual sampled smokes? If we obtain the data shown in that exercise,
what is the updated beta density function representing my updated belief concern-
ing the relative frequency of smokers? What is the probability the next indwidual
sampled smokes?

Section 6.2

Exercise 6.4 Suppose I am about to watch Sam and Dave race 10 times, and
Sam looks substantially athletically inferior to Dave. So I give Sam a probability
of .1 of winning the first race. However, I feel that if Sam wins once, he should
usually win. So given that Sam wins the first race, I give him a .8 probability of
winning the next one. Using the technique shown in Example 6.10, determine
the beta density function representing my prior belief concerning the relative
frequency with which Sam will win. Determine my probability of Sam winning
all 10 races.

Suppose next that Sam wins the first two races. Determine the updated beta
density function representing my updated belief concerning the relative frequency
with which Sam will win. Determine my probability of him winning the next race
and of winning all 8 remaining races.

Section 6.3

Exercise 6.5 Assuming the prior beliefs concerning the relative frequency of
smokers shown in Ezxercise 6.2, determine a 95% for the E(F) where F is
a random wvariable representing my belief concerning the relative frequency of
smokers. Do the determination exactly and using the normal approximation.

Exercise 6.6 Assuming the prior beliefs concerning the relative frequency of
smokers shown in Ezxercise 6.2 and the data shown in that example, determine
a 95% for the E(F) where F is a random variable representing my updated belief
concerning the relative frequency of smokers. Do the determination exactly and
using the normal approximation.

Section 6.4

Exercise 6.7 Show the Bayesian network embedded in the augmented Bayesian
network in Figure 6.34. Assume the random wvariables corresponding to the
conditional relative frequencies are as follows:
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beta(f,,; 4,8) beta(f,,; 6,6)

beta(f,;; 1,1) beta(f,,; 1,3)

Figure 6.34: An augmented Bayesian network

Parent Values RandomVarable
Xl = 1,X2 =1 Fgl
Xl = 1,X2 =2 F32
Xl = 2,X2 =1 Fgg
Xl = 2,X2 =2 F34

Exercise 6.8 Suppose we have a binomial Bayesian network sample whose pa-
rameter is the augmented Bayesian network in Figure 6.34, and we have these
data d:

Case
1

Juin

© 00 ~J O U = W N
HH[\DH[\DH[\D[\DHHN

wawwwt\w—pwgﬂ
»—»—www»—»—»—w»—ﬁﬁ

—
o

Compute P(d) and p(fi;|d) for alli,j. Show the updated augmented Bayesian
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Figure 6.35: A DAG.

network and updated embedded Bayesian network. Determine P(Xs = 1) for
the 11th case.

Exercise 6.9 Does the augmented Bayesian network in Figure 6.34 have an
equivalent sample size? If so, what is it?

Exercise 6.10 Complete the proof of Theorem 6.13.

Exercise 6.11 Use Theorem 6.13 to develop an augmented Bayesian network
with equivalent sample sizes 1, 2, 4, and 10 for the DAG in 6.35.

Exercise 6.12 Given the Bayesian network in Figure 6.36 and N = 36, use
Theorem 6.14 to create an augmented Bayesian network.

Exercise 6.13 Consider the augmented Bayesian network in Figure 6.37. What
is its equivalent sample size? Determine all augmented Bayesian networks that
are equivalent to it. Show that P(d) is the same for every Bayesian network
sample whose parameter is one of these augmented Bayesian networks, given
the data d in Ezercise 6.8.

Section 6.5

Exercise 6.14 In the text, we updated the augmented Bayesian network in Fig-
ure 6.28 (a) with the data d in Table 6.4 using two iterations of Algorithm 6.1
(Expectation-Mazimization). Starting with the results in the text, perform the
next two iterations.

Section 6.6
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P(X,=1)=3/4 P(X,=1)=1/3

P(X, = 1|X, = 1,X,=1) = 1/9

P(X, = 1|X, =2X,=1)=1/3
P(X, = 1X, = 1X,=2) = 1/2

P(X, = 1|X, = 2,X, = 2) = 1/6

P(X, = 1[X,=1) = 2/3
P(X, = 1|X,=2) = 5/8

Figure 6.36: A Bayesian network.

beta(f,,; 10,4) beta(f,; 3,7) beta(f,,; 1,3) beta(f,;;2,2) beta(f,, 4,6)

. . G

Figure 6.37: An augmented Bayesian network.

Exercise 6.15 Consider the augmented Bayesian network in Figure 6.37. Let
F' be a random variable representing our belief concerning the relative frequency
with which X, equals 1. Compute E(F?) using that network and all networks
equivalent to it. Are your values the same?



Chapter 7

More Parameter Learning

Chapter 6 considered Bayesian networks in which the variables are all binary. In
Section 7.1 we extend the theory presented in the previous chapter to multino-
mial variables. We provide fewer examples and intuitive explanations than usual
and we leave proofs of theorems and lemmas as exercises. The reason is that
the theory is a straightforward generalization of the theory for binary variables.
The notation is merely more difficult. After that, Section 7.2 discusses learning
parameters in the case of continuous variables.

7.1 Multinomial Variables

First we present the method for learning a single parameter in the case of a
multinomial variable; second we further discuss the Dirichlet density function;
third we show how to compute probability intervals and regions; and fourth we
present the method for learning all the parameters in a Bayesian network in
the case of multinomial variables. After all this, we close by briefly noting the
methods presented in Chapter 6 for learning parameters in the case of missing
data items and for computing variances in computed relative frequencies can
readily be extended to the case of multinomial variables.

7.1.1 Learning a Single Parameter

After discussing subjective probability distributions of relative frequencies in the
case of multinomial variables, we generalize the method developed in Section
6.1.2 for estimating relative frequencies from data.

Probability Distributions of Relative Frequencies

We start with a definition.
Definition 7.1 The Dirichlet density function with parameters ay,as, . .. a,,

381
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Figure 7.1: The Dir(f1, f2;2,2,2) density function.

N =37 _, ai, where ay,as,...a, are integers > 1, is

o foree frot) = P it et o< g <1 S

[I I'(ax) k=1
k=1

Random variables Fy, Fy, . .. F,., that have this density function, are said to have
a Dirichlet distribution.
The Dirichlet density function is denoted Dir(fi, fa, ... fr_1;a1,a2,...a).

Note that the value of F). is uniquely determined by the values of the first
r — 1 variables (ie. f. =1— Z;} fr). That is why p is only a function of
r — 1 variables. As shown in Section 6.2.3, the Dirichlet density function is a
generalization of the beta density function. Figures 7.1 and 7.2 show Dirichlet
density functions.

As discussed in Section 6.2.3, there are cogent arguments for using the Dirich-
let distribution to model our beliefs concerning relative frequencies. Often we
say the probability assessor’s experience is equivalent to having seen the kth
value occur a; times in N trials.

We will need the following lemma concerning the Dirichlet density function:

Lemma 7.1 If Fy, Fs, ... F, have a Dirichlet distribution with parameters ay, as,
coiry N =35 ag, then for 1 <k <r

a
E(F,) = Nk

Proof. The proof is left as an exercise.

Now suppose we have some r-outcome random process. Let X be a random
variable whose space {1,2,...r} contains the outcomes of the experiment, and
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Figure 7.2: The Dir(f1, f2;4,2,2) density function.

for 1 < k < r let Fy be a random variable whose space is the interval [0, 1].
The probability distribution of F}, represents our belief concerning the relative
frequency with which X = k. Assume our beliefs are such that

P(X = k[fr) = f-

That is, if we knew for a fact that the relative frequency of k was fi, our belief
concerning the occurrence of k in the first execution of the experiment would
be fi. Given this assumption, the theorem that follows obtains our subjective
probability for the first trial.

Theorem 7.1 Suppose X is a random wvariable with space {1,2,...r}, and
Fy, Fs, ... F,. are r random variables such that for all k,

P(X = kl|fx) = fr-

Then
P(X =k)=E(Fy).
Proof. The proof is left as an exercise.
Corollary 7.1 If the conditions in Theorem 8.2 hold, and if Fy, Fs, ... F, have
a Dirichlet distribution with parameters a1, as,...ar, N = a, then
ag
P(X=k)=—.
(X=h)="

Proof. The proof follows immediately from Theorem 8.2 and Lemma 7.1.
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Example 7.1 Suppose I am going to repeatedly throw a strange lop-sided die
with three sides. The shape is so odd that I have no reason to prefer one side
over the other, but, due to my lack of experience with such a die, I do not feel
strongly the relative frequencies are the same. So I model my beliefs with the
Dir(f1, f2;2,2,2) density function. We have

F(G) 2—1 r2-1 2-1
e TR
= 1201 f2(1 = f1 = fa).

This density function is shown in Figure 7.1. Due to the previous corollary, for
the first throw we have

Dir(flaf2;2a 25 2)

. 2 1
P(Side =1) = 5=5—5 =3
2 1

P(Side =2)= ———— = =
(Side=2)=o————5 =3

. 2 1
P(Side =3) = 5=5—5 =3

Example 7.2 Suppose I am going to sample individuals in the United States,
and determine the relative frequency with which they wear colored, white, and
black socks. I think that about the same number of individuals wear black as
wear white socks, and about twice as many individuals wear colored sock as do
wear either of the former. However, I do not feel strongly about this belief. So
I model my beliefs with the Dir(f1, f2;4,2,2) density function. We have

Dir(f15f2;45252) - ﬁ {1_1 22_1(17.][17.][2)2_1

84017 fa(1— f1 — f2).

This density function is shown in Figure 7.2. Due to the previous corollary, for
the first individual sampled,

4 1
P(SOCI{?S = COlO?”Ed) = m = 5
. 2 1
P(Socks = white) = 172521
2 1
P(SOC]{?S = bl(IC/{?) = m = ZL

Example 7.3 Suppose I am going to repeatedly throw an ordinary six-sided die.
I am fairly confident all relative frequencies are the same. So I model my beliefs
with the Dir(fi1, fo, f3, fa, f5; 50,50, 50,50, 50, 50) density function.
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Learning a Relative Frequency

We start with a definition.
Definition 7.2 Suppose we have a sample of size M such that

1. each XM has space {1,2,...1};

2. F={F,F,...F.},and for I<h<M and 1 <k <r
P(XM =&|f1, ... frre o fr) = f-
Then D is called a multinomial sample of size M with parameter F.

Example 7.4 Suppose we throw a strange lop-sided die with three sides 10
times. Let k be the outcome if a k comes up, and let X ™) ’s value be the outcome
of the hth throw. Furthermore, let the density function for the variables in F be
Dir(fi, f2;2,2,2). Then D = {X® X2 .. X0 s a multinomial sample of

size 10 whose parameter has a Dirichlet distribution.

Before developing theory that enables us to update our belief about the next
trial from a multinomial sample, we present two more lemmas concerning the
Dirichlet distribution.

Lemma 7.2 Suppose Fy, Fs, ... F,. have a Dirichlet distribution with parame-
ters aj,as,...ar, N =Y ag, S1,82,...8 are r integers > 0, and M = Y sp.

Then
T o) L(N) 7 Dlax + sx)
E(}EF’“ ) - T(N+ M) H Fk(ak)k ’

k=1

Proof. The proof is left as an exercise.

Lemma 7.3 Suppose Fy, Fs, ... F,. have a Dirichlet distribution with parame-
ters ay,ag,...ar, N =3 ayp, and $1, S2,... s, are r integers > 0. Then

(HZ:1 o) p(f, fo, - fro1)
E ([Tt F3¥)

Proof. The proof is left as an exercise.

= Di?“(fl,fg, .. -fr—l;al + 81,09 + S2,...0a, +3r)-

Theorem 7.2 Suppose

1. D is a multinomial sample of size M with parameter F;
2. we have a set of values (data)
d={z® 3 . 0}

of the variables in D;
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3. si is the number of variables in d equal to k.
Then
Pd)=E <H F,;) .
k=1
Proof. The proof is left as an exercise.

Corollary 7.2 If the conditions in Theorem 7.2 hold, and Fy, Fs, ... F,. have a
Dirichlet distribution with parameters ay, az, ...a,, N =Y ag, then

"IN+ M T(ax)

k=1

Proof. The proof follows immediately from Theorem 7.2 and Lemma 7.2.

Example 7.5 Suppose we have the multinomial sample in Example 7.4, and
d=1{1,1,3,1,1,2,,3,1,1,1}.

Then a1 =ay =a3 =2, N =6, s1 =7,89 = 1,83 =2, M = 10, and due to the
preceding corollary,

re) re+nre+1yre+2)
r'6+10) I'(2) r'2) r'2)

P(d) = =4.44 x107°.

Theorem 7.3 If the conditions in Theorem 7.2 hold, then

(ﬁ fk) oo fore fro)
k=1

p(flana"'f?”—1|d): ” P
=(fy )

I
k=1

where p(f1, fa, ... fr—1|d) denotes the conditional density function of Fi, Fs,
... F. given D =d.
Proof. The proof is left as an exercise.

Corollary 7.3 Suppose the conditions in Theorem 7.2 hold, and Fy,Fy,...F,
have a Dirichlet distribution with parameters ai,az,...a,, N =5 ap. That is,

p(fl; fg, . fr—l) = Di?"(fl, fg, e fr—l; ai, ag, .. .(lr).
Then

p(fl,fg, L. fr_1|d) = Di?“(fl, fg, - fr—1§Q1 + 81,02 + S2,...a, + Sr).

Proof. The proof follows immediately from Theorem 7.8 and Lemma 7.3.
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Figure 7.3: The Dir(f1, f2;9,3,4) density function.

The previous corollary shows that when we update a Dirichlet density func-
tion relative to a multinomial sample, we obtain another Dirichlet density func-
tion. For this reason, we say the set of all Dirichlet density functions is a
conjugate family of density functions for multinomial sampling.

Example 7.6 Suppose we have the multinomial sample in Example 7.4 and the
data in Example 7.5. Then a1 = as =a3 =2, 81 =71, S9 =1, and s3 = 2. Due
to the preceding corollary,

p(fld) = DZ?"(fl,fg,2+7,2+1,2+2) - Dir(f13f2;93334)'

Figure 7.1 shows the original density function and Figure 7.3 shows the updated
density function.

Theorem 7.4 Suppose the conditions in Theorem 7.2 hold. If we create a
multinomial sample of size M + 1 by adding variable X M+1) to D, then for
all k

P(XMFY = k|d) = E(Fy|d).

Proof. The proof is left as an exercise.

Corollary 7.4 If the conditions in Theorem 7.2 hold, and Fy, Fs,...F, have a
Dirichlet distribution with parameters ai, az, ...ar, N = ai, then for all k

ap + Sk

P(XMFY — k|d) = N
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Proof. The proof follows immediately from Theorem 7.4, Corollary 7.3, and
Lemma 7.1.

Example 7.7 Suppose we have the multinomial sample in Example 7.4 and the
data in Example 7.5. Then a1 = as = a3 = 2,N = 6,81 = 7,80 = 1,83 = 2,
M =10, and due to the preceding corollary,

2+7

P(XM+D) = 1|d) = —— = .562

( ) 6+ 10 5625
241

P(XMHD) = o|d) = —— = .1

( ) 6+ 10 875
242

P(XM+Y — 3|d) = = —= — 95,

( ) 6+ 10

7.1.2 More on the Dirichlet Density Function

After discussing the use of non-integral values in the Dirichlet density function,
we provide guidelines for assessing the values.

Non-integral Values of ay,

So far we have only shown examples where a;, is an integer > 1 for each k. Figure
7.4 shows the Dir(f1, f2;.2,.2,.2) density function. As that figure illustrates,
as all ap approach 0, we become increasingly certain the relative frequency of
one of the values is 1.

Assessing the Values of ay

Next we give some guidelines for choosing the size of a; in the Dirichlet distri-
bution, when we are accessing our beliefs concerning a relative frequency.

e 4] —as = --- = a, = 1: These values mean we consider all combinations
of relative frequencies that sum to 1 equally probable. We would use these
values when we feel we have no knowledge at all concerning the value of
the relative frequency. We might also use these values to try to achieve
objectivity in the sense that we impose none of our beliefs concerning
the relative frequency on the learning algorithm. We only impose the
fact that we know at most r things can happen. An example might be
learning the probability of low, medium, and high blood pressure from
data, which we want to communicate to the scientific community. The
scientific community would not be interested in our prior belief, but in
what the data had to say. Note we might not actually believe a priori
that all relative frequencies that sum to 1 are equally probable, but our
goal is not to impose this belief on the learning algorithm. Essentially the
posterior probability represents the belief of an agent that has no prior
beliefs concerning the relative frequencies.
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Figure 7.4: The Dir(f1, f2;.2,.2,.2) density function.

e 4y = ay = - = a, > 1: These values mean we feel it more probable that
the relative frequency of the kth value is around ar/N. The larger the
values of ax, the more we believe this. We would use such values when
we want to impose our beliefs concerning the relative frequency on the
learning algorithm. For example, if we were going to toss a ordinary die,
we might take a; = as = -+ = ag = 50.

e a; =ay = -+ = a, < 1: These values mean we feel relative frequencies,
that result in not many different things happening, are more probable. We
would use such values when we want to impose our beliefs concerning the
relative frequencies on the system. For example, suppose we know there
are 1,000, 000 different species, and we are about to land on an uncharted
island. We might feel it probable that not very many of the species are
present. So if we considered the relative frequencies with which we encoun-
tered different species, we would not consider relative frequencies, which
resulted in a lot of different species, probable. Therefore, we might take
aj = 1/1000, 000 for all k.

7.1.3 Computing Probability Intervals and Regions

We generalize the method for computing a probability interval developed in
Section 6.3.
Suppose Fi, Fy, ... F,., have a Dirichlet distribution. That is, their density
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function is given by

DU for o frn) = o gt et <1 S 2,
H F(ak) k=1
k=1

where ay,asg, . ..a, are integers > 1, and N = 2221 ag. By integrating over the
remaining variables, we obtain that the marginal density function of Fj is given
by
F(N) ak—1 br—1
b = e f T (= fi)

where
bk =N — Q.

It is left an exercise to show this. So

p(fr) = beta( fr; ak, br.),

which means we can use all the techniques in Section 6.3 to compute a proba-
bility interval for Fj.

Example 7.8 Consider the Dir(f1, f2;4,2,2) density function, which was used
to model our beliefs concerning the color socks that people wear. We have N =
4+ 2+ 2 =28. Therefore, due to Lemma 7.1, we have

ap 4
E(F) = — = = = 5.
(F)=F=5=2
Furthermore,
bh=8—-4=4.

A 95% probability interval for Fy can therefore be found by solving the following
equation for c:

.5+c& . - )
/5—c L(4)0(4)7! (L= f1)"dfy = .95.

Using the mathematics package Maple, we obtain the solution ¢ = .316. So our
95% probability interval for Fy is

(5 — .316,.5 + .316) = (.184, .816).

Similarly, a 95% probability interval for Fy can be found by solving the following
equation for c:

.25+c& - B - B
/0 rar@e)? () =95

Using the mathematics package Maple, we obtain the solution ¢ = .271. So our
95% probability interval for Fy is

(0,.25 4 .271) = (0, .521).
Clearly, this is also our 95% probability interval for Fs.
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Figure 7.5: Given the Dir(f1, f2;8,8,16) density function, this is a 95% proba-
bility square for F; and Fs.

We can also obtain probability regions for two or more random variables.
The following example illustrates this.

Example 7.9 Suppose we have the Dir(f1, f2;8,8,16) density function. We
can obtain a 95% probability square for Fy and Fy by solving the following equa-
tion for c:

.254c¢ .25+c¢ F(32) B B _ B
Lo Jo. TOOT@IEA OB 1 = 95

Using the mathematics package Maple, the solution is ¢ = .167. Since .25 —
167 = .083, and .25 4+ .167 = .417, the following are corners of a square,
centered at (.25,.25), that contains 95% of the probability mass:

(.167,167) (.417,.167) (.167,.417) (A417,.417).

Figure 7.5 shows this probability square.

When finding a region as in the previous example, we must be careful not
to cross the borders of where the density function is defined. For example, in
the case of three values, we must not only be careful to not cross each axis, but
also to not cross the line f; + fo = 1.
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7.1.4 Learning Parameters in a Bayesian Network

Next we extend the theory for learning a single parameter to learning all the
parameters in a Bayesian network.

Multinomial Augmented Bayesian Networks

We start by generalizing Definition 6.9 of a binomial augmented Bayesian net-
work.

Definition 7.3 A multinomial augmented Bayesian network (G,F,p) is
an augmented Bayesian network as follows:

1. For every i, X; has space {1,2,...7;}.

2. For every i there is an ordering [pa;;, pa;g, - - - Pay,,| of all instantiations
of the parents PA; in V of X;, where q; is the number of different instan-
tiations of these parents. Furthermore, for every i,

Fi=Fa1UFpU---Fy,,
where
Fij ={Fij1, Fijo,. Fijr,},

each F;; is a root, has no edge to any variable except X;, and has density
function

pij(fij) = p(fij1; fijzo - fijri—1)) 0< fijr <1, Zfijk =1

k=1
3. For every i, ] and k, and all values fﬂ, .. -fij; . fiqi Of Fil; . Fij; e Fiqi;
P(XZ = k:|paij,fi1, .. -fij; .. f’qu) = fijk-

Since the F;;s are all root in a Bayesian network, they are mutually inde-
pendent. So besides the Global Parameter Independence of the sets F;, we have
Local Parameter Independence of their subsets F;;. That is, for 1 <i <n

p(fir, fiz, .. . fig,) = p(fir) p(fiz) - - - p(fiq, ).
Global and local independence together imply

p(fir, fiz, -« fng,) = p(fi1)p(fi2) - p(fug,,)- (7.1)

Note that again to avoid clutter we did not subscript the density functions.

Note that a binomial augmented Bayesian network is a multinomial aug-
mented Bayesian network in which r; = 2 for all i. Figure 7.6 shows a multino-
mial augmented Bayesian network that is not a binomial one. A multino-
mial augmented Bayesian network is a generalization of a binomial augmented
Bayesian network, and has all the same properties. To that effect, we have the
following theorem, which generalizes the corresponding theorem for binomial
augmented Bayesian networks.
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Dir(f,,,.f,,, 4,8,10)  Dir(f,,, f.f = 1,1,1,1)  Dir(h,,f0 0000 24,1,1)  Dir(f,fouf,o 1,3,4,2)

111071127 211'212'°213" 221'°222'°223" 231'7232'°233"

(a

)

PX,=1)=2/11 P(X,=1[X,=1)=1/4 P(X,=1JX, =3)=1/10

P(X,=2)=4/11  P(X,=2|X,=1)=1/4 P(X,=2[X,=3)=23/10

P(X,=3)=5/11 Pp(X,=3|X,=1)=1/4 P(X,=3|X,=3)=2/5
P(X,=4|X,=1)=1/4 P(X,=4]X,=3)=1/5

P(X,=1|X, =2) = 1/4
P(X,=2|X,=2) = 1/2
P(X,=3|X,=2) = 1/8
P(X,=4|X,=2)=1/8

(b)

Figure 7.6: A multinomial augmented Bayesian network is in (a), and its em-
bedded Bayesian network is in (b).

Theorem 7.5 Let a multinomial augmented Bayesian network (G, F, p) be given.
Then for every i and j, the ijth conditional distribution in (G, P) is given by

P(X; = klpa;;) = E(Fiji).
Proof. The proof is left as an exercise.

Corollary 7.5 Let a multinomial augmented Bayesian network be given. If
the wvariables in each F;; have a Dirichlet distribution with parameters a;;i,
@ij2y -+ Qijryy Nij = Zk aij, then for each i and each j, the ijth conditional
distribution in the embedded network (G, P) is given by

Q;j
P(X; = klpa;;) = NJ’“

Proof. The proof follows directly from Theorem 7.5 and Lemma 7.1.
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Learning Using a Multinomial Augmented Bayesian Network

Next we give generalizations of the definitions and theorems in Section 6.4.3 to
multinomial augmented Bayesian networks. You are referred to that section for
discussions and examples, as we provide none here.

Definition 7.4 Suppose we have a Bayesian network sample of size M such
that

1. for every i each Xi(h) has space {1,2,...7;};
2. its augmented Bayesian network (G, F, p) is multinomial.

Then D is called a multinomial Bayesian network sample of size M
with parameter (G, F).

Theorem 7.6 Suppose

1. D is a multinomial Bayesian network sample of size M with parameter

(G, F);

2. we have a set of values (data) of the XM s as follows:

xﬁ“ xgz) ng)
<D = : x@ — : x(M) — :
2D e (M)

d={xM x® xO)y.

3. M;; is number of x(") s in which X;’s parents are in their jth instantiation,
and of these M;; cases, siji s the number in which x; is equal to k.

Then

=111 (H Fk>

1=17=1
Proof. The proof is left as an exercise.

Corollary 7.6 Suppose we have the conditions in Theorem 7.6 and the vari-
ables in each F;; have a Dirichlet distribution with parameters a;ji1, a;jo, - . - Qijr,
Nij = Zk Qjjk - Then

= ot Dlaijn + sijn)
HHF N +Mlj H I?((Iijk)j ’

Proof. The proof follows immediately from Theorem 7.6 and Lemma 7.2.
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Theorem 7.7 (Posterior Local Parameter Independence) Suppose we
have the conditions in Theorem 7.6. Then the F;js are mutually independent
conditional on D. That 1is,

n o qi

p(fir,fiz, .. g, |d) = H H p(fij|d).
i=1j=1
Furthermore,

p(fij|d) = p(fijl,fij2,---fij(ri—1)|d)

<kH1 ff};ik) p(fijis fij2y - - fijeri—1))

e (1 r)
k=1

Proof. The proof is left as an exercise.

Corollary 7.7 Suppose we have the conditions in Theorem 7.6 and the vari-
ables in each F;; have a Dirichlet distribution with parameters a;ji, G2, . - . Qijr; s
Nij =Y a;ji. That is, for each i and each j

p(figrs figas - fijri-1)) = Dir(figus figas - Fijri-1)3 Qigas @igas - - @igr,)-
Then
p(fijis fijes- - fijri—1)|d)
= Dir(fij1, fij2, - fijri—1); @ij1 + Sij1, Qija2 + Sija, - - - Qijr, + Sijr;)-

Proof. The proof follows immediately from Theorem 7.7 and Lemma 7.3.

Using an Equivalent Sample Size

The results in Section 6.4.4 concerning equivalent sample sizes also hold for
multinomial augmented Bayesian networks. We just state the corresponding
results here.

Prior Equivalent Sample Size We start with a definition.

Definition 7.5 Suppose we have a multinomial augmented Bayesian network
in which the density functions are Dir(fij1, fijo,--- fijtri—1); Qij1, Qij2, - - - Qijr,)
for alli and j. If there is a number N such that for all i and j

N,L] = Z(Iijk = P(paw) X N,
k=1

then the network is said to have equivalent sample size N.
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If a multinomial augmented Bayesian network has n nodes and equivalent
sample size N, we have for 1 <i < n,

qi

i:Nij = Z [P(pa;;) x N] = N x le(paij) = N.

j=1 j=1

It is unlikely we would arrive at a network with an equivalent sample size
simply by making up values of a;;;. The next two theorems give common way
for constructing one.

Theorem 7.8 Suppose we specify G, F, and N and assign for all i, j, and k
N

Then the resultant augmented Bayesian network has equivalent sample size N,
and the probability distribution in the resultant embedded Bayesian network is

uniform.
Proof. The proof is left as an exercise.

Aijk =

Theorem 7.9 Suppose we specify G, F, N, a Bayesian network (G, P), and
assign for all i and j

aijr = P(X; = k|paij) X P(paij) x N.

Then the resultant multinomial augmented Bayesian network has equivalent
sample size N. Furthermore, it embeds the originally specified Bayesian net-
work.

Proof. The proof is left as an exercise.

Definition 7.6 Multinomial augmented Bayesian networks (G, F(©1), p|G1) and
(Go, F(©2) p|Gy) are called equivalent if they satisfy the following:

1. Gy and Gy are Markov equivalent.

2. The probability distributions in their embedded Bayesian networks are the
same.

3. The specified density functions in both are Dirichlet.
4. They have the same equivalent sample size.

Lemma 7.4 (Likelihood Equivalence) Suppose we have two equivalent multino-
mial augmented Bayesian networks (G, F(©V), p|G,) and (Gy,F(©2) p|Gy). Let

D be a set of random wvectors as specified in Definition 7.4. Then for every set

d of values of the vectors in D,

P(dG1) = P(d|G2)

where P(d|Gy) and P(d|Gz) are the probabilities of d when D is considered
multinomial Bayesian network samples with parameters (G, F(©1)) and (Go, F(©2))
respectively.

Proof. The proof can be found in [Heckerman et al, 1995].
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Theorem 7.10 Suppose we have two equivalent multinomial augmented Bayesian
networks (G1,F(©), p|G,) and (Gy,F(©2) p|Gy). Let D be a set of random vec-
tors as specified in Definition 7.4. Then given any set d of values of the vectors
in D, the updated embedded Bayesian network relative to D and the data d, 0b-
tained by considering D a binomial Bayesian network sample with parameter
(G, F(Gl)), contains the same probability distribution as the one obtained by
considering D a binomial Bayesian network sample with parameter (Ga, F(G2)).
Proof. The proof is exactly like that of Theorem 7.10.

Corollary 7.8 Suppose we have two equivalent multinomial augmented Bayesian
networks (G, F(®1) p|Gy) and (Ga, F©2), p|Gy). Then given any set d of val-
ues of the variables in D, the updated embedded Bayesian network relative to D
and the data d, obtained by considering D a binomial Bayesian network sample
with parameter (G1,F(©1)), is equivalent to the one obtained by considering D a
binomial Bayesian network sample with parameter (Go, F(G2)).

Proof. The proof follows easily from the preceding theorem.

Expressing Prior Indifference with a Prior Equivalent Sample Size
Recall in Section 6.4.4 we suggested that perhaps the best way to express prior
indifference, when every variable has two values, is simply to specify an equiva-
lent sample size of two, and, for each node, distribute the sample evenly among
all specified values. If every variable has r values, this same argument suggests
we should use an equivalent sample size of r. However, in general, the variables
do not have the same number of values. So what size should we use in the
general case? It seems the most reasonable choice is to find the variable(s) with
the greatest number of values maxr, and use mazxr as the equivalent sample
size. This may seem a bit strange because, for example, if X is a root with
two values and mazr = 16, then we specify a beta(f;8,8) density function at
X. It seems that we have become highly confident P(X = 1) is equal to .5 just
because we included X in a network with other variables. The following pro-
vides a reasonable intuition justifying this. Suppose Y is a variable with maxr
values. In order to ‘know’ Y has maxr values, it is arguable that minimally
our prior experience must be equivalent to having seen each of them occur once.
Therefore, our prior sample size must be at least equal to maxr. Since X is in
that prior sample, there are also maxr observations of values of X.

Some Theoretical Results In Section 6.4.4, we argued for an equivalent
sample size on intuitive grounds. Furthermore, we proved we get the kind of
results we want when we use one. However, is there an axiomatic justifica-
tion for assuming one? Heckerman et al [1995] discuss learning the conditional
independencies (and thereby a DAG pattern) among the variables from data,
a subject we discuss in Chapters 8-11. However, their results are relevant to
our considerations here. Namely, they show that if we make certain reasonable
assumptions, then we must use an equivalent sample size. Their assumptions
are the following: 1) we represent the belief that conditional independencies
are present using a multinomial augmented Bayesian network whose DAG G
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entails all and only those conditional independencies; 2) the hypothesis that no
conditional independencies are present has positive probability; 3) when X; has
the same set of parents in V in two multinomial augmented Bayesian networks,
the density functions of F;; for all j are the same in those networks (called Pa-
rameter Modularity); 4) if two multinomial augmented Bayesian networks
(G1,F©1), p|G1) and (Gy,F(©2) p|Gy) satisfy only the first two conditions in
Definition 7.6, then we have Likelihood Equivalence (as defined in Lemma
7.4); and 5) all density functions are everywhere positive (i.e. the range of each
function includes only numbers greater than zero.). Given these assumptions,
they prove the density functions must be Dirichlet, and there is some N such
that each network has equivalent sample size N.

7.1.5 Learning with Missing Data Items

Algorithm 6.1, which appears in Section 6.5, extends immediately to one for
learning in the case of multinomial Bayesian networks.

7.1.6 Variances in Computed Relative Frequencies

It is left as an exercise to consult the references mentioned in Section 6.6 in
order to extend the results in that section to the case of multinomial variables.
Here we only state a generalization of Theorem 6.16, which you will need to
compute variances.

Theorem 7.11 Suppose Fy, Fs, ... F, have the Dir(fi, fa,... fr—1;01,02,...a;)

density function. Then
am,

-5

BlFm) = <£Zk++11 ) < Za@k )

Q1 Qm
(Cax+1) X ar

Proof. The proof is left as an exercise.

E(F,,)

E(FF,,) =

7.2 Continuous Variables

Recall in Chapter 4.1 we defined a Gaussian Bayesian network, and we de-
veloped an algorithm for doing inference in such a network. Here we present a
method for learning parameters in Gaussian Bayesian networks. First we discuss
learning parameters for a normally distributed variable. Then we discuss learn-
ing parameters for variables which have the multivariate normal distribution.
Finally, we apply the theory developed to learning parameters in a Gaussian
Bayesian network.
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° k,(a) =N(a;z,1/v)
° K (x|a) = N(x;a,1/r)

Figure 7.7: The probability distribution of A represents our belief concerning
the mean of X.

7.2.1 Normally Distributed Variable

First we assume the mean of the variable is unknown and the variance is known.
Then we discuss the case where the mean is known and the variance is unknown.
Finally, we assume both are unknown.

Before proceeding to do all this, we have the following definition:

Definition 7.7 Suppose X has the normal density function N(x;u,02). Then
the precision r of X is defined as follows:

1

r=—.
o2
Henceforth we show the normal distribution using the precision. The reason

should become clear as we develop the theory.

The Case of Unknown Mean and Known Variance

Suppose X is normally distributed with unknown mean and known precision 7.
We represent our belief concerning the unknown mean with a random variable
A (for average), which is normally distributed with mean p and precision v.
Note that the probability distribution of X is a relative frequency distribution
which models a phenomenon in nature, while the probability distribution of
A is our subjective probability concerning the value of X’s mean. Owing to
the discussion in Section 6.1.1, we represent this situation with the Bayesian
network in Figure 7.7.
The following theorem gives the prior density function of X:

Theorem 7.12 Suppose X and A are random variables such that

the density function of A is

pala) = N(a;p, 1/v),
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k,(a) =N(a;:,1v)

ko(xDla) = N(xD;a,1lr)  k@(x?la) = N(x@;a,1/r)  kan(x™]a) = N(x™;a,1/r)

Figure 7.8: A Bayesian network representing a normal sample of size M with
parameter {A,r}.

and the conditional density function of X given A = a is
px (xla) = N(x;a,1/r).

Then the prior density function of X is
1 1
=N{(zpu—-+-].
pX(x) <$7H,r +"U>
Proof.

px(@) = / o (zla)p 4 (a)da

a

= /N(x;a, 1/r)N(a; p, 1/v)da

a

= /N(a;x, 1/r)N(a; p, 1/v)da

a

1 1
= N<:r;,u,;+;>

The 3rd equality is due to Equality 4.2 and the 4th is due to Equality
4.5.

We see that X has a normal distribution with the same mean as A, but X
has greater variability than A owing to the uncertainty in X conditional on A’s
value.

Suppose now that we perform M trials of a random process whose outcome
is normally distributed with unknown mean and known precision r, we let X (%)
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be a random variable whose value is the outcome of the hth trial, and we let
A be a random variable representing our belief concerning the mean. Again
assume A is normally distributed with mean p and precision v. As discussed in
Section 6.1.2, we assume that if we knew the value a of A for certain, then we
would feel the X "5 are mutually independent, and our probability distribution
for each trial would have mean a. That is we have a sample defined as follows:

Definition 7.8 Suppose we have a sample of size M such that

1. each XM has space the reals;

2. F={Ar},
pala) = N(a;p, 1/v)
and for 1 < h <M,

pxm (@M a) = N a,1/r).
Then D is called a normal sample of size M with parameter {A,r}.
We represent this sample with the Bayesian network in Figure 7.8
Theorem 7.13 Suppose

1. D is a normal sample of size M with parameter {A,r} where r > 0, and
A has precision v > 0;

2.d = {zM 2@ 2D} s q set of values (data) of the variables in D,

and
Zﬁil )

LAV

Then the posterior density function of A is

palald) = N(a; p*, 1/v")

where gy
* = % and v =0+ Mr. (7.2)
Proof. It is left as exercises to show
.M
po(dla) = exp [5 > (@™ - a)ﬂ : (7.3)
h=1

where exp(y) denotes e¥ and = means ‘proportionate to’, and that

M

M
Z(:B(h) —a)!=M(a—7)*+ Z(:I:(h) -7)% (7.4)

h=1 h=1
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Since the far right term in FEquality 7.4 does not contain a, we may rewrite
Relation 7.8 as follows:

pp(dla) = exp [%(a 5)2} . (7.5)
The prior density function of A satisfies the following:
pala) = exp [~ (a—p)?]. (7.6)
We have
palald) = pp(dla)ps(a) (7.7)
~ exp [—g(a — ,u)Q} exp [%(a 5)2} .

The first proportionality in Relation 7.7 is due to Bayes’ Theorem, and the
second is due to Relations 7.5 and 7.6. It is left as an exercise to show

vMr(T — p)?

vla—p)* + Mr(a—2)° = (v + Mr)(a = p")* + — ==

(7.8)

Since the final term in Equality 7.8 does not contain a, it can also be included
in the proportionality factor. So we can rewrite Relation 7.7 as

palald) = exp [UBMT(CLM*)Q}
_ (a —p*)?
- [2(1/12*)}
«  N(a;p®,1/v%). (7.9)

Since p 4(ald) and N(a; u*,1/v*) are both density functions, their integrals over
the real line must both equal 1. Therefore, owing to Relation 7.9, they must be
the same function.

Example 7.10 Suppose D is a normal sample of size M with parameter {A,1}.
That is, we represent our prior belief concerning A using a value of r = 1. Then,
owing to the previous theorem, our posterior density function of A is given by

pA(ald) - N((I, ,u*a 1/"0*),

where

*

vp+ Mz
v+ M

From the previous example, we see that when r = 1, if we consider the
parameter p the mean of the hypothetical sample on which we base our prior
belief concerning the value of A and v its size, then p* would be the mean of
the hypothetical sample combined with the actual sample, and v* would be the
size of this combined sample. Therefore, we can attach the following meaning
to the parameters p and v:

and v =v+ M. (7.10)
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The parameter p is the mean of the hypothetical sample upon which we base
our prior belief concerning the value of A.

The parameter v is the size of the hypothetical sample on which we base our
prior belief concerning the value of A.

Example 7.11 Suppose r = 1, v = 4 and pu = 10. Then we can consider our
prior belief as being equivalent to having seen a sample of size 4 in which the
mean was 10. Suppose next we sample 3 items, and we obtain zV) =4, () =5,
2™ =6. Then M =3, T = (4+5+6)/3 =5, and therefore owing to Equality
7.10
. vp+Mz  (4x10)+ (3 x5)
v+ M 443

= 7.86

and

Example 7.12 Note that v must be greater than 0 because if v were 0, the
variance of A would be infinite. We can take the limit as v — 0 (i.e. as the
variance approaches infinity) of the expressions for p* and v* (Equality 7.2) to
model the situation in which we have complete prior ignorance as to the value
of A. Taking these limits we have

‘i M

W =1

m T
v—0 ’U+MT‘

and
vt = lin%)(erMr) = Mr.

Alternatively, we could obtain the same result using an tmproper prior
density function. It is called improper because it is not really a density func-
tion in that its integral is not finite. We obtain an improper density function
by taking the limit of the prior density function as v — 0. The prior density
function appears in Equality 7.6. Taking the limit of that density function, we
have

pa(a) = lim (exp [—E(a - ,LL)QD =1
v—0 2
Note that this is only a formal result because we are ignoring the constant of
proportionality which is approaching 0. This improper density function imparts
a uniform distribution over the whole real line.
Using this improper prior density function and proceeding from Relation 7.7,
we obtain that

pA(ald) - N(a;ia 1/MT‘),

which is the same as the result obtained by taking the limit as v — 0 of the
expressions for u* and v*.
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Assuming the improper prior density function, the posterior variance of A
is 02 /M, where 0® = 1/r is the known variance of each X' conditional on A.
A posterior perc % probability interval for A is therefore given by

_ g _ g
T — Zpere—7—, L + Zperc P
( VM ! ¢M>

where Zpere 18 the z-score obtained from the Standard Normal Table (See Section
6.3 for a discussion of probability intervals and the z-score.). If you are famil-
iar with ‘classical’ statistics, you should notice that this probability interval is
identical to the perc % confidence interval for the mean of a normal distribution
with know variance o?.

Note that if we take v = 0, then the prior density function of X (obtained
in Theorem 7.12) is also improper.

Next we give a theorem for the density function of XM+ the M + st trial
of the experiment.

Theorem 7.14 Suppose we have the assumptions in Theorem 7.13. Then

XM has the posterior density function

1 1
pxoren (@MHV]d) = N (x(MH)?H*, ~+ F) )

where the values of * and v* are those obtained in Theorem 7.13.
Proof. The proof is left as an exercise.

The Case of Known Mean and Unknown Variance

Next we discuss the case where the mean is known and the variance is unknown.
First we need to review the gamma distribution.

The Gamma Distribution We start with the following definition:

Definition 7.9 The gamma density function with parameters o and f3,
where a >0 and 8 > 0, is

plz) = Fﬂ(a) zo e P x>0,

and is denoted gamma(x; ., [3).
A random variables X that has this density function is said to have a gamma
distribution.

If the random variable X has the gamma density function, then

BE(X)=2  and V(X):%.
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0.127]

0.17
0.08 ]
0.06 ]
0.047]

0.027]

Figure 7.9: The chi-square density function with 6 degrees of freedom.

Definition 7.10 The gamma density function is called the chi-square (x?)
density function with k degrees of freedom, where k is a positive integer,
when & .
. d ==
« 5 an 1) 5
and is denoted chi-square(x; k) and x3(x).

A random variables X that has this density function is said to have a chi-

square (x?) distribution with k degrees of freedom.

Example 7.13 We have

chi-square(z;6) = %xa_le_ﬁm

_ (1/2)°* £6/2-1,-(1/2)a
I'(6/2)

. i 2, —x/2

= 1611: e .

Figure 7.9 shows this density function.

The following theorem is a well-known result concerning the gamma density
function.

Theorem 7.15 Suppose X1, Xa,... Xy are k independent random variables,
each with the N(x;0,02) density function. Then the random variable

V=X+X2+---X}

has the gamma(v, k/2,1/20%) density function.
Proof. The proof is left as an exercise.
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Corollary 7.9 Suppose X1, Xo, ... Xy are k independent random variables, each
with the standard normal density function. Then the random variable

V=X+X+ --X}?

has the chi-square(v; k) density function.
Proof. The proof follows immediately from the preceding theorem.

Learning With Known Mean and Unknown Variance Now we can dis-
cuss learning in the case of known mean and unknown variance. Our goal is
to proceed quickly to the case where both are unknown. So the only result
we present here is a theorem which obtains the posterior distribution of the
variance. We obtain this result because we refer to it in the next subsection.

Suppose we perform M trials of a random process whose outcome is normally
distributed with known mean @ and unknown variance, and we let X(*) be a
random variable whose value is the outcome of the hth trial. We represent our
belief concerning the unknown precision with a random variable R, which has
the gamma(r; /2, 3/2) density function. Similar to before, we assume that if
we knew the value 7 of R for certain, then we would feel the X(")s are mutually
independent, and our probability distribution for each trial would have precision
r. That is we have a sample defined as follows:

Definition 7.11 Suppose we have a sample of size M such that

1. each X" has space the reals;

2. F={a, R},
pr(r) = gamma (r;a/2,3/2),
and for 1 <h <M

pxm (@™ r)y = N@®;a,1/r).
Then D is called a normal sample of size M with parameter {a, R}.

The following theorem obtains the updated distribution of R given this sam-
ple.

Theorem 7.16 Suppose

1. D is a normal sample of size M with parameter {a, R};

2.d={axM 2@ 2 s a set of values of the variables in D, and

5= i (a:(h) - a)

h=1

2
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Then the posterior density function of R is
pr(rld) = gamma(r,a” /2, 3% /2)

where
B =pB+s and o =a+ M. (7.11)

Proof. The proof is left as an exercise.

Let’s investigate the parameters o and 3. Suppose &1, #() . & are the
values in the hypothetical sample upon which we base our prior belief concerning
the value of R, and (3 is the value of s for that sample. That is,

ﬁi(:ﬁia)Q.

Then clearly 3% would be the value of s for the combined sample. Therefore,
we see that we can attach the following meaning to the parameters o and (3:

The parameter [ is the value of s in the hypothetical sample upon which we
base our prior belief concerning the value of R.

The parameter « is the size of the hypothetical sample upon which we base
our prior belief concerning the value of R.

Example 7.14 We can take the limit as 3 — 0 and o — 0 of the expressions
for a* and B to model the situation in which we have complete prior ignorance
as to the value of R. Taking these limits we have

B = lim (B+5) =5

af = lin%)(aJrM):M.

Alternatively, we could obtain the same result by taking the limit of the prior
density function gamma (r;a/2,5/2) as 8 — 0 and o — 0. Taking the limit of
that density function, we have

« lim lim (r* e P7) = =,
pR(T) al—%ﬁli% (7" ¢ ) T

This improper density function assigns a large probability to large variances
(small values of r), and small probability to small variances.
Using this improper prior density function, it is left as an exercise to show

pr(r|d) = gamma(r; M/2,s/2).

which is the same as the result obtained by taking the limit as 8 — 0 and o — 0
of the expressions for 3* and o*.
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Figure 7.10: The t density function with 3 degrees of freedom.

The Case of Unknown Mean and Unknown Variance

We now assume both the mean and the variance are unknown. First we need
to review the t distribution.

The t Distribution We start with the following definition:

Definition 7.12 The t density function with o degrees of freedom, where
a>0, s

() = (%)w% <1+%2)_£&T+1l Co<z<oo, (7.12)

2

and is denoted t(x; ).
A random wvariables X that has this density function is said to have a t
distribution with « degrees of freedom.

If the random variable X has the ¢(z; ) density function and if o > 2, then

E(X)=0 and V(X)=

Figure 7.10 shows the ¢ density function with 3 degrees of freedom. Note its
similarity to the standard normal density function. Indeed, it is left as an
exercise to show the standard normal density function is equal to the limit as «
approaches infinity of the t distribution with « degrees of freedom.

The family of ¢ distributions can be enlarged so that it includes every density
function which can be obtained from a density function of the form shown in
Equality 7.12 through an arbitrary translation and change of scale. We do that
next.
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Definition 7.13 A random variables X has at distribution with o degrees of
freedom, where o > 0, location parameter u, where —oo < p < 0o, and precision
7, where T > 0, if the random variable 7V/2(X — p) has a t distribution with o
degrees of freedom. The density function of X is

o= (5) Ly, e

and is denoted t(x; o, p, 7).

B a+1
2 ? —oo<x<oo, (7.13)

If the random variable X has the t(x; v, i, 7) density function and if o > 2,

then
SR

a—2T

Note that the precision in the ¢ distribution does not exactly equal the inverse
of the variance as it does in the normal distribution. The N (x; u,1/7) is equal
to the limit as « approaches infinity of the ¢(z;a, p, 7) density function (See
[DeGroot, 1970].).

E(X)=u and V(X)=

Learning With Unknown Mean and Unknown Variance Now we can
discuss learning when both the mean and the variance are unknown. Suppose
X is normally distributed with unknown mean and unknown precision. We
again represent our belief concerning the unknown mean and unknown preci-
sion with the random variables A and R respectively. We assume R has the
gamma (r; /2, 5/2) density function and A has the N (a; p, 1/vr) conditional
density function. The following theorem gives the prior density function of X.
Theorem 7.17 Suppose X , A, and R are random variables such that
the density function of R is
pr(r) = gamma (r; /2, 6/2),
the conditional density function of A given R =1 is
palalr) = N (a;p, 1/vr),
and the conditional density function of X given A =a and R =1 is
px(xla,r) = N(z;a,1/r).

Then the prior density function of X is

px(z) =t (a:;a,u, ﬁ) . (7.14)
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Proof. We have

px@) = [ [oxtalanipylanpg(rirda
= //N(a:;a,1/r)N(a;,u,1/vr)gamma(r;a/2,ﬂ/2)drda.

It is left as an exercise to perform this integration and obtain Equality 7.14.

Suppose now that we perform M trials of a random process whose outcome
is normally distributed with unknown mean and unknown variance, we let X (%)
be a random variable whose values are the outcomes of the hAth trial, and we
represent our belief concerning each trial as in Theorem 7.17. As before, we
assume that if we knew the values a and r of A and R for certain, then we
would feel the X ()5 are mutually independent, and our probability distribution
for each trial would have mean a and precision r. That is we have a sample
defined as follows:

Definition 7.14 Suppose we have a sample of size M such that

1. each X" has space the reals;

2. F={A, R},
pr(r) = gamma (r;0/2,3/2),
palalr) =N (a;p,1/vr),
and for 1 <h <M

pxom (@Mla,r) = N(@™;a,1/r).
Then D is called a normal sample of size M with parameter {A, R}.
Theorem 7.18 Suppose

1. D is a normal sample of size M with parameter {A, R};

2. d={xM 2@ 2} is a set of values of the variables in D, and
M .(h) M 2
T = Zh% and s= }Z:l (a:(h) fi)

Then the posterior density function of R is

pr(r|d) = gamma(r,a*/2, 3" /2)

where
M(@ — p)?

ﬂ*:ﬂJrerv — and of =a+ M, (7.15)
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and the posterior conditional density function of A given R =r is

palalr,d) = N(a;pu*,1/v"r)

where e
t = % and vt =v+ M.
Proof. It is left as exercises to show
.M
b(dla,r) = r"/?exp l§ Z (M) — 1 (7.16)
and that
parlar) = palalr)pr(r) (7.17)

- 7,,1/26—(1)7"/2)(a—p)2T,a/2—1€—ﬁr/2.

Owing to Bayes Theorem, p4 g(a, r|d) is proportional to the product of the right
sides of Relations 7.16 and 7.17. Using equalities similar to Equalities 7.4 and
7.8, it is left as an exercise to perform steps similar to those in Theorem 7.13
to obtain

pa,rla,rld) = {7"1/26361? [v; (a— M*)Q} } {ra*/Q_le_ﬁ*/Q}.

This completes the proof.

Based on a discussion similar to that following Example 7.10, we can attach
the following meaning to the parameters p and v:

The parameter p is the mean of the hypothetical sample upon which we base
our prior belief concerning the value of A.

The parameter v is the size of the hypothetical sample upon which we base
our prior belief concerning the value of A.

Let’s investigate the parameters a and 3. Suppose (1), #(2) .. ¥ are the
values in the hypothetical sample upon which we base our prior belief concerning
the value of A, p is the mean of that sample, and ( is the value of s in that
sample. That is,

ﬁ:Z(irifu)Q. (7.18)

Based on these assumptions, it is left as an exercise to use the left equality in
Equalities 7.15 to show

ﬂ*ixu +Z(<h ) (7.19)

h=1

which would be the value of s for the combined sample. Therefore, we see that
we can attach the following meaning to the parameter [:
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The parameter [ is the value of s in the hypothetical sample upon which we
base our prior belief concerning the value of A.

There does not seem to be a clear-cut meaning we can attach to the para-
meter . Based on the right equality in Equality 7.15 and the result obtained
in Section 7.2.1 for the case where only the mean is known, we may want to
say it is about equal to the size of the hypothetical sample upon which we base
our prior belief concerning the value of R. However, Equality 7.18 indicates we
should make v that size. These results suggest we should make a about equal
to v. Indeed, the next example shows that is reasonable to make a equal to
v—1.

Example 7.15 Suppose we want to express complete prior ignorance as to the
values of A and R by using the product of the improper density function when
we knew only the value of the mean and the improper density function when we
knew only the value of the variance. That is, we take the product of the uniform
density function over the whole real line (which is simply 1) and the function
1/r. We then have

1
pA,R(CL,T) =
Recall Relation 7.17 says

pAyR((I, 7") el 7"1/26_(”T/z)(a—ﬂ)zra/Z—le_ﬁr/g.

In order for the limit of this expression to be equal to 1/r, we would have to take
the limit as v — 0, B — 0, and o — —1. If we use these values to model prior
ignorance, we obtain

G =s and o =M -1,
uw=x and vt =M,
the posterior density function of R is
pr(r|d) = gamma(r; (M — 1) /2,5/2),
and the posterior conditional density function of A given R =r is
palalr,d) = N(a;z, 1/Mr).

It is left as an exercise to show that this means sr = s/o? is distributed
X2(M —1). We therefore have

s
P\ (M =1) < 5 <33, (M =1)| = - P,
where x%;(M — 1) is the P; fractional point of the x*(M — 1) distribution. A
few manipulations yields

s 9 s

Pl———— <o <7} =P -P.
[X%Q(Ml) Xp, (M — 1)
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If you are familiar with ‘classical’ statistics, you should notice that this Py — Py
probability interval for o2 is identical to the Py — Py confidence interval for the
variance of a normal distribution with unknown mean and unknown variance.

Next we give a theorem for the density function of X(M+1) the M + 1st trial
of the experiment:

Theorem 7.19 Suppose we have the assumptions in Theorem 7.18. Then
XM+ has the posterior density function

pX(M+1)(ﬂc(M+1)|d) —¢ (x(MH); o, it ﬁ) ,

where the values of o, 8*, u*, and v* are those obtained in Theorem 7.18.
Proof. The proof is left as an exercise.

7.2.2 Multivariate Normally Distributed Variables

After reviewing the multivariate normal, the Wishart, and the multivariate ¢
distributions, we obtain our result for learning parameters when variables have
the multivariate normal distribution. We prove few results in this subsection.
Most are generalizations of the results in the previous subsection.

The Multivariate Normal Distribution

Next we discuss the mulitivariate normal distribution, which is a generalization
of the normal distribution to more than one variable. In this context, we call
the normal distribution the univariate normal distribution and the distrib-
ution of two variables the bivariate normal distribution. We discuss this latter
distribution first in order to make it easier to understand the general case.

Bivariate Normal Distribution Defined

Definition 7.15 The bivariate normal density function with parameters
ly, O1, Jo, 02, and p, where —oo < p; < 00, o; >0, and |p| < 1, is

p(x,x2) =

1
20109 (1 —p?)

B |

—00 < x; < 00, and is denoted N(x1,To; g, 0%, lg, 02, D).
Random variables X1 and X5 that have this density function are said to have
the bivariate normal distribution.

12~
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o)
-
o

Figure 7.11: The N(x1,x2;0,1,0,1,0) density function.

If the random variables X; and X5 have the bivariate normal density func-

tion, then

and

BE(X1)=m

V(XQ) = 0’%,

and

E(X2) = po

and

=P,

p (Xla XQ)

denotes the correlation coefficient of X; and Xs.

)

where p (X7, Xo
Example 7.16 We have

1
L

V2

which is the product of two standard univariate normal density functions. This

exp [

1
2

,12,0)

12,0

0

N(x1, zo;

e

21_2

e

L

V2

density function, which appears in Figure 7.11, is called the bivariate standard

normal density function.

Example 7.17 We have
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Figure 7.12: The N(x1,22;1,2,20,12,.5) density function.

N(21,72;1,22,20,122, 5) =
1 X
27(2)(12)(1 — 52)1/2

1 1 —1\° (1 — 1) (w2 —20) (33 —20\°
o g (U)o g ()

Figure 7.12 shows this density function.

In Figures 7.11 and 7.12, note the familiar bell-shaped curve which is char-
acteristic of the normal density function. The following two theorems show the
relationship between the bivariate normal and the normal density functions.

Theorem 7.20 If X; and X5 have the N(x1,22; 11,03, ji, 03, p) density func-
tion, then the marginal density function of Xy is

PXl(il?l) = N(il?la;#p(f%)-
Proof. The proof is developed in the exercises.

Theorem 7.21 If X and X5 have the N(x1,22; 1,03, jiy, 03, p) density func-
tion, then the conditional densify function of X1 given Xo = xo is

Px, (T1]22) = N(T1;1x, oys O, 2n)
where
g1
Bxyjws =M1+ D — ) (22 — o)
g2
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and
Jg(l\mg - (1 7p2)0'§'

Proof. The proof is left as an exercise.

More on Vectors and Matrices Recall we defined random vector and ran-
dom matrix in Section 5.3.1. Before proceeding, we discuss random vectors
further. Similar to the discrete case, in the continuous case the joint density
function of X1, ... and X, is represented using a random vector as follows:

px(x) = PXy,.. X, (71, ... ).

We call
E(X1)
E(X) = :
E(X,)
the mean vector of random vector X, and
V(Xl) COU(Xl,Xg) COU(Xl,Xn)
Cov(Xa, X7) V(Xo) - Cou(Xa, Xy
Cov(X) = . . . .
Cov(X,,X1) Cov(X,,X2) - V(X,,X,)

the covariance matrix of X. Note that the covariance matrix is symmetric.
We often denote a covariance matrix as follows:

2
01 012 -+ Oi1n

2
¢ 21 g5 o O2p
2
On1 On2 g,

Recall that the transpose X of column vector X is the row vector defined
as follows:
XT=(X1 - X,).

We have the following definitions:

Definition 7.16 A symmetric n X n matriz a is called positive definite if

xTax > 0

for all n-dimensional vectors x # 0, where 0 is the vector with all 0 entries.
Definition 7.17 A symmetric nxn matriz a is called positive semidefinite
if

xTax >0

for all n-dimensional vectors x.
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Recall a matrix a is called non-singular if there exists a matrix b such that
ab = I, where I is the identity matrix. Otherwise it is called singular??. We
have the following theorem:

Theorem 7.22 If a matriz is positive definite, then it is nonsingular; and if a
matrixz is positive semidefinite but not positive definite, then it is singular.
Proof. The proof is left as an exercise.

(0 1)

is positive definite. You should show this.

(11)

is positive semidefinite but not positive definite. You should show this.

Example 7.18 The matriz

Example 7.19 The matriz

Multivariate Normal Distribution Defined We can now define the mul-
tivariate normal distribution.

Definition 7.18 Let

X = :
Xn

be a random vector. We say X has a multivariate normal distribution if
for every n-dimensional vector b”,

b'X
either has a univariate normal distribution or is constant.

The previous definition does not give much insight into multivariate normal
distributions or even if one exists. The following theorems show they do indeed
exist.

Theorem 7.23 For every n-dimensional vector p and n X n positive semidefi-
nite symmetric matriz 1, there exists a unique multivariate normal distribution
with mean vector p and covariance matrix .

Proof. The proof can be found in [Muirhead, 1982].

Owing to the previous theorem, we need only specify a mean vector g and
a positive semidefinite symmetric covariance matrix 1 to uniquely obtain a
multivariate normal distribution. Theorem 7.22 implies that 1) is nonsingular
if and only if it is positive definite. Therefore, if 1) is positive definite, we say
the distribution is a nonsingular multivariate normal distribution, and
otherwise we say it is a singular multivariate normal distribution. The
next theorem gives us a density function for the nonsingular case.
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Theorem 7.24 Suppose the n-dimensional random vector X has a nonsingular
multivariate normal distribution with mean vector p and covariance matrix 1.
Then X has the density function

where
AX(x) = (x — )" (x — ).

This density function is denoted N(x; p, ).
Proof. The proof can be found in [Flury, 1997].

The inverse matrix
T=vy !

is called the precision matrix of N(x;p,?). If 4 = 0 and v is the iden-
tity matrix, N(X;u, 1) is called the multivariate standard normal density
function.

Example 7.20 Suppose n = 2 and we have the multivariate standard normal
density function. That is,

and ¢<é?>.
Then
(3 1),
N) = () x )
- e (0 1)(3)
= i +a3,
and
VoY) = e -38%)
- @[

1 1
= 5o [5 (23 + x%)}

- N(ZEl,xQ;O, 12505 1250)7



7.2. CONTINUOUS VARIABLES 419

which is the bivariate standard normal density function.
It is left as an exercise to show that in general if

()

and

is positive definite, then

N(X; IL,'P) - N(xlaxQ;,ulao'%hubo—%’O’lQ/[0102])'
3
e~ (3)
1 1
e=(i1)

Since 1 is not positive definite, Theorem 7.2/ does not apply. However, since
Y is positive semidefinite, Theorem 7.23 says there is a unique multivariate
normal distribution with this mean vector and covariance matriz. Consider the
distribution of X1 and Xy determined by the following density function and
equality:

Example 7.21 Suppose

and

(@1 -3)°
plr1) = N 2

Xy =X;.

Clearly this distribution has the mean vector and covariance matrixz above. Fur-
thermore, it satisfies the condition in Definition 7.18. Therefore, it is the unique
multivariate normal distribution that has this mean vector and covariance ma-
triz.

Note in the previous example that X has a singular multivariate normal dis-
tribution, but X; has a nonsingular multivariate normal distribution. In general,
if X has a singular multivariate normal distribution, there is some linear rela-
tionship among the components X, ... X,, of X, and therefore these n random
variables cannot have a joint n-dimensional density function. However, if some
of the components are deleted until there are no linear relationships among
the ones that remain, then the remaining components will have a nonsingular
multivariate normal distribution.

Generalizations of Theorems 7.20 and 7.21 exist. That is, if X has the
N(X; p, 7)) density function, and

(X
x=(%)
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then the marginal distribution of X; and the conditional distribution of X;
given X, = x5 are both multivariate normal. You are referred to [Flury, 1997
for statements and proofs of these theorems.

The Wishart Distribution

We have the following definition:

Definition 7.19 Suppose X1, Xa,... Xy are k independent n-dimensional ran-
dom vectors, each having the multivariate normal distribution with n-dimensional
mean vector 0 and n X n covariance matriz ¢. Let V denote the random sym-
metric k X k matriz defined as follows:

V=X, XT + XX+ X, XT

Then 'V is said to have a Wishart distribution with k degrees of freedom and
parametric matrixc .

Owing to Theorem 7.22, 1 is positive definite if and only if it is nonsingu-
lar. If £ > n — 1 and 1) is positive definite, the Wishart distribution is called
nonsingular. In this case, the precision matrix T of the distribution is defined
as

T=q "

The follow theorem obtains a density function in this case:

Theorem 7.25 Suppose n-dimensional random vector V has the nonsingular
Wishart distribution with k degrees of freedom and parametric matrix 1. Then
V has the density function

pv) = ) ] P2l e [ (07

where tr is the trace function and

n . -1
c(n, k) = l2kn/2ﬂn(n—1)/4 HF (%)1 ) (7.20)
=1

This density function is denoted Wishart(v;k,T).
Proof. The proof can be found in [DeGroot, 1970).

It is left as an exercise to show that if n = 1, then Wishart(v; k,1/0?) =
gamma(v; k/2,1/20?). However, showing this is not really necessary because it
follows from Theorem 7.15 and the definition of the Wishart distribution.
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The Multivariate ¢ Distribution

We have the following definition:

Definition 7.20 Suppose n-dimensional random vector Y has the N(Y; p, )
density function, T = p~", random variable Z has the chi—square(z; ) density
function, Y and Z are independent, and p is an arbitrary n-dimensional vector.
Define the n-dimensional random vector X as follows: Fori=1,...n

7\ /2
(0%

Then the distribution of X is called a multivariate t distribution with o
degrees of freedom, location vector p, and precision matriz T.

The following theorem obtains the density function for the multivariate ¢
distribution.

Theorem 7.26 Suppose n-dimensional random vector X has the multivariate
t distribution with o degrees of freedom, location vector p, and precision matrix
T. Then X has the following density function:

1 —(atn)/2
p(x) =b(n,0) |1+ —(x — ) ' T(x — p) : (7.21)
where
L (242) T2
I(a/2) (am)"*

This density function is denoted t(x; o, pu, T) .
Proof. The proof can be found in [DeGroot, 1970)].

b(n,a) =

It is left as an exercise to show that in the case where n = 1 the density
function in Equality 7.21 is the univariate ¢ density function which appears in
Equality 7.13.

If the random vector X has the ¢(x; «, p, T) density function and if o > 2,

then
@ et

a—2

Note that the precision matrix in the ¢ distribution is not the inverse of the
covariance matrix as it is in the normal distribution. The N (x; u, T™1) is equal
to the limit as « approaches infinity of the ¢(x; v, u, T) density function (See
[DeGroot, 1970].).

EX)=p and Cov(X) =

Learning With Unknown Mean Vector and Unknown Covariance Ma-
trix

We discuss the case where both the mean vector and the covariance matrix
are unknown. Suppose X has a multivariate normal distribution with unknown
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mean vector and unknown precision matrix. We represent our belief concern-
ing the unknown mean vector and unknown precision matrix with the ran-
dom vector A and the random matrix R respectively. We assume R has the

Wishart(r; o, 3) density function and A has the N (a; L, (vr)_l) conditional
density function. The following theorem gives the prior density function of X.

Theorem 7.27 Suppose X and A are n-dimensional random vectors, and R
is an n X n random matriz such that

the density function of R is
pr(r) = Wishart(r; «, 3)

where a > n—1 and B is positive definite (i.e. the distribution is nonsin-
gular).

the conditional density function of A given R =r is

palalr) = N (aip, (or) ™)
where v > 0,
and the conditional density function of X given A =a and R =r is
px(x|a,r) = N(x;a,r71).

Then the prior density function of X is

(7.22)

px(X)t<X;an+ 1;N;MIB—1>.

(v+1)
Proof. The proof can be found in [DeGroot, 1970].

Suppose now that we perform M trials of a random process whose outcome
has the multivariate normal distribution with unknown mean vector and un-
known precision matrix, we let X(" be a random vector whose values are the
outcomes of the hAth trial, and we represent our belief concerning each trial as
in Theorem 7.27. As before, we assume that if we knew the values a and r of
A and R for certain, then we would feel the X(")s are mutually independent,
and our probability distribution for each trial would have mean vector a and
precision matrix r. That is, we have a sample defined as follows:

Definition 7.21 Suppose we have a sample of size M as follows:

1. We have the n-dimensional random vectors

x0—| x@ - | x|
xM b XM

D={X1 x® xO™)y

such that for every i each Xi(h) has space the reals.
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2. F={A,R},
pr(r) = Wishart(r; o, 3),

where a >n — 1 and B is positive definite,
palalr) = N (asp, (or) )
where v > 0, and for 1 <h < M
pxn (xP]a,r) = N(xM;a,r70).

Then D is called multivariate normal sample of size M with parameter
{AR}.

The following theorem obtains the updated distributions of A and R given
this sample.

Theorem 7.28 Suppose

1. D is a multivariate normal sample of size M with parameter {A,R};

2.d= {x(l), x() .x(M)} is a set of values of the random vectors in D, and

M (h) M T
o 2h=1X ad 5= (X(h) _ g) (X(h) . g) .

M
h=1

Then the posterior density function of R is
pr(rld) = Wishart(r; o*, B")
where

M
B =Brs+—m®-WE-p)"  ad o =at+M, (7.23)

and the posterior conditional density function of A given R =r is

pa(alr,d) = N(a; p*, (v'r) ™)
where
. vp+ MX
v+ M
Proof. The proof can be found in [DeGroot, 1970].

and vt =v+ M.

As in the univariate case which is discussed in Section 7.2.1, we can attach
the following meaning to the parameters:

The parameter p is the mean vector in the hypothetical sample upon which
we base our prior belief concerning the value of A.
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The parameter v is the size of the hypothetical sample upon which we base
our prior belief concerning the value of A.

The parameter 3 is the value of s in the hypothetical sample upon which we
base our prior belief concerning the value of A.

It seems reasonable to make o equal to v — 1.

Similar to the univariate case, we can model prior ignorance by setting v = 0,
B =0, and @ = —1 in the expressions for 3%, o*, p*, and v*. However, we
must also assume M > n. See [DeGroot, 1970] for a complete discussion of this
matter. Doing so, we obtain

B =s and ot =M -1,

and

* *

n=x and v = M.

Example 7.22 Suppose n = 3, we model prior ignorance by setting v = 0,
B =0, and a = —1, and we obtain the following data:

Case X1 X2 X3
1 1 2 6
2 5 8 2
3 2 4 1
4 8 6 3
Then M =4 and
1 5 2 8
< — ) x(2) — ] x(3) — 4 x*) — 6
6 2 1 3
So
1 5 2 8
+1 8 |+ 4 |+ 6
_ 6 2 1 3
* 4
4
= 5
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and
-3 1
s = | 3 )(-3 =33)+ 3 ](13 —1)
3 -1
-2 4
+1 -1 ] (-2 -1 =2)+[ 1 |(4 1 0)
-2 0
30 18 -6
= 18 20 -10
-6 —-10 14
So
30 18 —6
B =s=| 18 20 -—10 and af=M-—-1=3,
-6 —-10 14
and
4
pr=x=15 and vt =M =4.
3

Next we give a theorem for the density function of X(M+1) the M +1st trial
of the experiment.

Theorem 7.29 Suppose we have the assumptions in Theorem 7.28. Then
XM+ has the posterior density function

* * "U*(Oé**nﬁ*l) ) —1
pxran (xMFD|d) = ¢ (X(MH); a’—n+1p ’W (B7) ) )
where the values of o*, 3%, u*, and v* are those obtained in Theorem 7.28.
Proof. The proof is left as an exercise.

7.2.3 Gaussian Bayesian Networks

A Gaussian Bayesian network uniquely determines a nonsingular multivariate
normal distribution and vice versa. So to learn parameters for a Gaussian
Bayesian network we can apply the theory developed in the previous subsection.
First we show the transformation; then we develop the method for learning
parameters.

Transforming a Gaussian Bayesian Network to a Multivariate Normal
Distribution

Recall that in Section 4.1.3 a Gaussian Bayesian network was defined as follows.
If PAx is the set of all parents of X, then

r=wx + Z bxzz, (7.24)
ZePAx
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where Wx has density function N(w;0, J%VX), and Wy is independent of each
7. The variable Wx represents the uncertainty in X’s value given values of X’s
parents. Recall further that o, is the variance of X conditional on values of
its parents. For each root X, its unconditional density function N(x;py,o%)
is specified.

We will show how to determine the multivariate normal distribution cor-
responding to a Gaussian Bayesian network; but first we develop a different
method for specifying a Gaussian Bayesian network. We will consider a variation
of the specification shown in Equality 7.24 in which each Wy does not necessar-
ily have zero mean. That is, each Wx has density function N(w; E(Wx ), oy ).
Note that a network, in which each of these variables has zero mean, can be
obtained from a network specified in this manner by giving each node X an aux-
iliary parent Z, which has mean E(Wx), zero variance, and for which by 7 = 1.
If the variable Wx in our new network is then given a normal density function
with zero mean and same variance as the corresponding variable in our original
network, the two networks will contain the same probability distribution.

Before we develop the new way we will specify Gaussian Bayesian networks,
recall that an ancestral ordering of the nodes in a directed graph is an ordering
of the nodes such that if Y is a descendent of Z, then Y follows Z in the ordering.
Now assume we have a Gaussian Bayesian network determined by specifications
as in Equality 7.24, but in which each Wx does not necessary have zero mean.
Assume we have ordered the nodes in the network according to an ancestral
ordering. Then each node is a linear function of the values of all the nodes that
precede it in the ordering, where some of the coefficients may be 0. So we have

Ty = w; + bjnwy + bjpwo + -+ bj 171,

where W; has density function N(w;; E(W;),0%), and b;; = 0 if X, is not a

1
parent of X;. Then the conditional density function of X; is

plailpag) = N EW) + Y byay,o?). (7.25)
X, €PA;
Since
E(X;) = E(W;) + Z bi; E(X;), (7.26)
X, €PA;

we can specify the unconditional mean of each variable X; instead of the un-
conditional mean of W;. So our new way to specify a Gaussian Bayesian
network is to show for each X; its unconditional mean p;, = E(X;) and its
conditional variance o?. Owing to Equality ??, we have then

EW;) = p; — Z bijh;-
X, EPA;
Substituting this expression for E(W;) into Equality 7.25, we have that the

conditional density function of X is

p(xilpa,) = N(wi i+ Y bij(xy — ), 07). (7.27)
X;E€PA;
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F12 F 2
:l -2

X 21

1

Figure 7.13: A Gaussian Bayesian network.

Figures 7.13, 7.14, and 7.15 show examples of specifying Gaussian Bayesian
networks in this manner.

Next we show how we can generate the mean vector and the precision matrix
for the multivariate normal distribution determined by a Gaussian Bayesian
network. The method presented here is from [Shachter and Kenley, 1989]. Let

and

bii—1

The mean vector in the multivariate normal distribution corresponding to a
Gaussian Bayesian network is simply

Hy
Hop,
The following algorithm creates the precision matrix.
T, = (t1); // Determine the precision matrix T.
for (i=2;i <=n;i++)
Ti = 3

—t;bl ti
T=T,; // The precision matrix is T,,.

Example 7.23 We apply the previous algorithm to the Gaussian Bayesian net-
work in Figure 7.13. We have

Ty = (t1) = (1/01)
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F_l2 I:22

"1 "2

31 32

Figure 7.14: A Gaussian Bayesian network.

T, — T + tobobd —t3by
2 —tyb? t

0—1% + (%g) (b21) (b21) — (a_lg (b21)
RATS

2
1 + by bay
= of = o3 a3 .
_ by

1
p)
T2

So the multivariate normal distribution determined by this Gaussian Bayesian
network has mean vector
_( M
# < 2 )

and precision matrix

1, b3 b
L+ iy
T = 71 T3 T3
_ by 1 :
o3 o3

1t is left as an exercise to show the covariance matriz is

Pp=T1= < of bzt ) . (7.28)

2 92,32 2
bo107 035 + b307
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Example 7.24 We apply the preceding algorithm to the Gaussian Bayesian
network in Figure 7.14. First note that byy = 0. We then have

T, = (t1) = (1/01)

Ty +t2bobl  —t3by
—tobl ta
B 2 + ( g) (b21) (bg1) — (Lg) (b21)
- % (ba1) =1
2 2
=+ (F) o0 -(F)o
— 1 2 93
—(52) 0 P
2 2
_ (= 0
— 0 0_12
2
T, — Ty + t3bsb? —t3b3
. —tsb¥
= 0 b b
o? 1 31 (1 31
_ (01 0_13 +(0)<b3 )(531 b32) (0§)<b32)
%) b3 b3z ) =
‘3 3
1
-z 0 L) b3, bsibso B (L) b31
— 0 =% 3 bsabs1 b3, o3 b32
2
1

W

N
&) O ) a

1 Ui babam bay

0.2 + 0.2 0.2 - 0.2

1 3 3 3

— baby 1 bi, bas
o2 3T er ol

_ b3y b3 a1’

o3 o3 o3

So the multivariate normal distribution determined by this Gaussian Bayesian

network has mean vector
251

and precision matrix

Lersz. b31b3z _bay

of ' o3 o3 o3

_ baob 1 b3 b
T=| tabu Ll by
3 2 3 3

_bay __bao L

o3 o3 o3
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F,2 F,2
- "2

1

Figure 7.15: A complete Gaussian Bayesian network.

1t is left as an exercise to show the covariance matriz is

O'% 0 bglo'%
=T "'= 0 o3 bs203 (7.29)
bsio]  bsaos 03,07 + 03,05 + 03

Example 7.25 Suppose we have the Gaussian Bayesian metwork in Figure
7.15. 1t is left as an exercise to show that the multivariate normal distribu-

tion determined by this network has mean vector

H1
n = :u2 )
H3
precision matric
L4 b3, + b by + baibzz  __bar
of ' o3 o3 o3 o3 o3
2

T = _bor | basbay 4 b _bas
ol T o2 gl 3
_bay __baz 1
o3 o3 o3

and covariance matrix
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Yp=T"=
o2 bo107 (bg1 + bsabar) o7
b3203+
. 2 2 2 3205
2107 03 T 02,01 (b32b3; + b3ibay) 0
(b31 + bgaboy) 02 bs203 03 + 03,07 + b3503
SLTIRRUOL 4 (bgpbB) + barbar) 03 + (03,03, + 2b21bs1b32) 0

(7.30)

Learning Parameters in a Gaussian Bayesian network

First we define a Gaussian augmented Bayesian network.

Definition 7.22 A Gaussian augmented Bayesian network (G,F,p) is
an augmented Bayesian network as follows:

1. For every i, X; is a continuous random variable.

2. For every 1,
Fi - {B’L; Mia 212}7

where B,LT = (Bila . B’i,i—l)'

3. For every i, for every value pa, of the parents PA; in V of X;, and every
value f; = {by, p;, 02} of F; = {B;, M;, 3?2},

p(xilpa;, fi, G) = N | is p; + Z bij(xjfﬂj)agzz
X, €PA;

The method shown here first appeared in [Geiger and Heckerman, 1994]. We
will update parameters relative to a multivariate normal sample using Theorem
7.28, and then convert the result to a Gaussian Bayesian network. However, as
proven in Theorems 7.27 and 7.29, the prior and posterior distributions rela-
tive to a multivariate normal sample are ¢ distributions rather than Gaussian.
So if we want our prior and updated distributions relative to the sample to be
contained in Gaussian Bayesian networks, we can only approximately represent
these distributions. We do this as follows: We develop a Gaussian Bayesian net-
work that approximates our prior distribution (We say approximates because,
if our beliefs are represented by a multivariate normal sample, our prior distri-
bution would have to be a ¢ distribution.). Then we convert this network to
the corresponding multivariate normal distribution which has density function
N (x;p, T~1). We approximate this distribution by a multivariate ¢ distribution
that has density function ¢(x;a, p, T), where the value of o must be assessed.
This is our prior density function. After determining our prior values of o and v,
we use Equality 7.22 to determine our prior value of 8. Next we apply Theorem
7.28 to determine updated values p*, a*,.v*, and 3*. Then we use Equality 7.22
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to determine the updated density function ¢(x; o*, u*, T*), and we approximate
this density function by N(x; p*, (T*)_l). Finally, we convert this multivariate
normal distribution back to a Gaussian Bayesian network. However, when we
convert, it back there is no guarantee we will obtain a network entailing the
same conditional independencies as our original network (which we assumed we
know). Therefore, for each variable X; we convert back to a complete Gaussian
Bayesian network in which the set of parents of X; are the same set of parents
X, has in our original Bayesian network. For each variable X; the resultant
updated values of b;; and o; yield a density function, conditional on values of
the parents of X;, which approximates the actual density function conditional
on values of the parents of X; and the data. Therefore, if the conditional inde-
pendencies entailed by the DAG in our original Gaussian Bayesian network are
correct (i.e. they are the ones in the actual relative frequency distribution), the
product of these conditional density functions approximates the joint density
function of the variables conditional on the data. Note that if the conditional
independencies entailed by that DAG are the ones in the relative frequency
distribution of the variables, we will have convergence to that distribution.

Note further that we never actually assess probability distributions for the
random variables F; in an augmented Gaussian Bayesian network. Instead we
assess distributions for the random variables A and R representing unknown
mean vector and unknown precision matrix in a multivariate normal distrib-
ution. Our assumptions are actually those stated for a multivariate normal
sample, and we only use the Bayesian network to obtain prior beliefs and to
estimate the updated distribution.

We summarize our steps next. Suppose we have a multivariate normal sam-
ple D = {XM X@ XM} with unassessed values of the parameters p, v,
3, and a, Then we assess values for these parameters and approximate the
posterior density function py a1 (xM+|d) as follows:

1. Construct a prior Gaussian Bayesian network (G, P) containing for 1 <
7 < n initial values of

2
s o3, and bij.

2. Convert the Gaussian Bayesian network to the corresponding multivariate
normal distribution using the algorithm in Section 7.2.3. Suppose the
density function for that distribution is N(x;u, T71).

3. Assess prior values of o and v. Recall

The parameter v is the size of the hypothetical sample upon which we
base our prior belief concerning the value of the unknown mean.

It seems reasonable to make o equal to v — 1.

4. Use Equality 7.22 to access the prior value of 3. That Equality yields

vlao—n+1)__4

A= (v+1)
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. Apply Theorem 7.28 to determine updated values 3, o*, u*, and v*.

The components p; of the updated mean vector p* are the updated
unconditional means in our updated Gaussian Bayesian network.

. Use Equality 7.22 to determine the updated value of T*. That Equality

yields
(v* +1)

(™) = a1

B

. For each variable X

(a) Create an ordering of the variables such that all and only the parents
of X; in G are numbered before X;.

(b) Using the algorithm in Section 7.2.3 convert N (x(M+1); p* (T*)™")
to a Gaussian Bayesian network yielding updated values

*2 *
o; and bi;-

K2

. Estimate the distribution of X(™*1 by the Gaussian Bayesian network

containing the DAG G and the parameter values yf, o}, and bj;.

7

Example 7.26 Suppose we have three variables X1, Xo, and X3, we know that
X1 and X5 are independent, and we obtain the following data:

Case | Xq | Xo | X3
1 1 2 6
2 5 8 2
3 2 4 1
4 8 6 3

We apply the previous steps to learn parameter values.

1. Construct a prior Gaussian Bayesian network (G, P). Suppose it is the

network in Figure 7.16, where all the parameters have arbitrary values.
We will see their values do not matter because we will set v =0 to model
prior ignorance.

Convert the Gaussian Bayesian network to the corresponding multivariate
normal distribution using the algorithm in Section 7.2.3. We need only
use Equality 7.29 to do this. We obtain the density function N(x; u, T—1)
where

231
H=1 H2
K3
and
O'% 0 bglo'%
r:[‘_1 = 0 O'% b320’%

2 2 2 2 2 2 2
b310’1 b320’2 b310'1 + b320'2 + g3
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F,2 F,2

1 -2

31 32

Figure 7.16: The prior Gaussian Bayesian network for Example 7.26.

3. Assess prior values of o and v. As discussed following Theorem 7.28, to
model prior ignorance we set

4. Determine the prior value of 3. We have

vlao—n+1)__4
——T
p (v+1)
2 2
o-1-3+1( o O© ba10y
= — 0 o5 b3a03 =0.
(0+1)

2 2 2 2 2 2 2
b310’1 b320’2 b310'1 +b320'2 +O'3

Note that we obtained the value of B that we said we would use to model
prior ignorance (See the discussion following Theorem 7.28.). Note further
that we would have obtained the same result if we had an arc from Xy to
Xs. In this case, the independence assumption only matters when we
convert back to a Gaussian Bayesian network after learning.

5. Apply Theorem 7.28 to determine updated values 3%, o, u*, and v*. As
obtained in Example 7.22,

30 18 —6
B = 18 20 -10 and a* =3,
-6 —10 14



EXERCISES 435

and

w=15 and vt =4.

So in our updated Gaussian Bayesian network
pr=4  pp=5 pz3=3.
6. Determine the updated value of T*. We have
(v* 4+ 1)

T* —1 _ *
(T) v*(a*fnJrl)ﬁ
30 18 —6
- 434% 1820 —10
B=3+D\ ¢ _10 14

375 225 =75
= 22.5 25 —12.5
—7.5 =125 175

7. For each variable X;
(a) Create an ordering of the variables such that all and only the parents
of X; in G are numbered before X;.

(b) Using the algorithm in Section 7.2.3 convert N (x(M+1D); y* (T*)™")
to a Gaussian Bayesian network yielding updated values

or? and by

For variables X1 and X3 we can use the ordering (X1, Xo, X3]. To trans-
form our multivariate normal distribution to a Gaussian Bayesian network
with this ordering, we need only use Fquality 7.30. We obtain

02 =375 o =11.5 05 =10435
by, =.6 by =217 by = —.696.

Only the values of 032, 032, by, and b}, are used in our updated Gaussian

Bayesian network. To obtain the value of 032 we use an ordering in which

Xy is numbered first. It is left as an exercise to show this value is 25.

Bernardo and Smith [1994] derive a formula for representing the updated ¢
distribution of X in a Bayesian network exactly.

EXERCISES

Section 7.1



436 CHAPTER 7. MORE PARAMETER LEARNING

Exercise 7.1 Find a rectangular block (not necessarily a cube) and label the
sides.  Given that you are going to repeatedly throw the block, determine a
Dirichlet density function that represents your belief concerning the relative fre-
quencies of the sides occurring and show the function. What is your probability
of each side coming up on the first throw?

Exercise 7.2 Suppose we are going to sample individuals, who have smoked
two packs of cigarettes or more daily for the past 10 years. We will determine
whether each individual’s systolic blood pressure is < 100,101 — 120, 121 — 140,
141 —160, or > 161. Ascertain a Dirichlet density function that represents your
belief concerning the relative frequencies and show the function. What is your
probability of each blood pressure range for the first individual sampled?
Exercise 7.3 Prove Lemma 7.1.

Exercise 7.4 Prove Theorem 8.2.

Exercise 7.5 Prove Lemma 7.2.

Exercise 7.6 Prove Lemma 7.3.

Exercise 7.7 Prove Theorem 7.2.

Exercise 7.8 Prove Theorem 7.3.

Exercise 7.9 Prove Theorem 7.4.

Exercise 7.10 Throw the block discussed in Exercise 7.1 100 times. Compute
the probability of obtaining the data that occurs, the updated Dirichlet density
function that represent your belief concerning the relative frequencies, and the

probability of each side for the 101st throw.

Exercise 7.11 Suppose we sample 100 individuals after determining the blood
pressure ranges in Exercise 7.2, and we obtain the following results:

Blood Pressure Range | # of Individuals in this Range
<100 2
101 — 120 15
121 — 140 23
141 — 160 25
> 161 35

Compute the probability of obtaining these data, the updated Dirichlet density
function that represent your belief concerning the relative frequencies, and the
probability of each blood pressure range for the next individual sampled.
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Exercise 7.12 Suppose Fy, Fs, ... F,., have a Dirichlet distribution. That is,
their density function is given by

o foro fon) = ) g gt gt o<1 S f= 1,
H F(ak) k=1
k=1

where ay,as, ... a, are integers > 1, and N = >, _, ax. Show that by integrating
over the remaining variables, we obtain that the marginal density function of F},
is given by

_ F(N) ap—1 r—1
p(fk)*mk (1= fi) 1,

where
bk =N — ayg.

Exercise 7.13 Using the Dirichlet density function you developed in Exercise
7.2, determine 95% probability intervals for the random variables that represent
your prior belief concerning the relative frequencies of the 5 blood pressure ranges
discussed in that exercise.

Exercise 7.14 Using the posterior Dirichlet density function obtained in Ex-
ercise 7.11, determine 95% probability intervals for the random variables that
represent your posterior belief concerning the relative frequencies of the 5 blood
pressure ranges discussed in that exercise.

Exercise 7.15 Using the Dirichlet density function you developed in Exercise
7.2, determine a 95% probability square for the random variables that represents
your belief concerning the relative frequencies of the first two blood pressure
ranges discussed in that exercise.

Exercise 7.16 Using the Dirichlet density function you developed in Exercise
7.2, determine a 95% probability cube for the random wvariables that represent
your belief concerning the relative frequencies of the first three blood pressure
ranges discussed in that exercise.

Exercise 7.17 Prove Theorem 7.5.
Exercise 7.18 Prove Theorem 7.6.
Exercise 7.19 Prove Theorem 7.7.

Exercise 7.20 Suppose we have the augmented Bayesian network in Figure 7.6
and these data:
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Case | X1 | Xo
1 1 2
2 1 3
3 2 1
4 2 2
5 3 4
6 2 2
7 3 3
8 2 1
9 3 4
10 1 1
11 1 4
12 2 1
13 3 2
14 2 3
15 1 1

Compute the following:
1. P(d)
2. p(fi11, fi12]d)
8. p(for1, far2, f213]d)
4. p(fa21, fa22, fo2s|d)
5. p(fas1, fozz, fazs|d).

Show the updated augmented Bayesian network and the updated embedded Bayesian
network. For 1 <k <4 determine P(Xy = k) for the 16th case.

Exercise 7.21 Does the network in Figure 7.6 have an equivalent sample size?
If so, what is it?

Exercise 7.22 Prove Theorem 7.8.
Exercise 7.23 Prove Theorem 7.9.

Exercise 7.24 Consult the references mentioned in Section 6.6 in order to ex-
tend the results in that section to the case of multinomial variables.

Section 7.2

Exercise 7.25 Establish Relation 7.5.

Exercise 7.26 Establish Relation 7.8.
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Exercise 7.27 Prove Theorem 7.14.
Exercise 7.28 Prove Theorem 7.15.
Exercise 7.29 Prove Theorem 7.16.

Exercise 7.30 At the end of FExample 7.1} it was left as an exercise to show
Pria(r) = gamma(r; M/2,s/2). Do this.

Exercise 7.31 Obtain Equality 7.1/.
Exercise 7.32 Obtain Relation 7.16.
Exercise 7.33 Obtain Equality 7.19.
Exercise 7.34 Prove Theorem 7.19.

Exercise 7.35 In Example 7.15 it was left as an exercise to show sr = s/a? is
distributed x*(M — 1). Do this.

Exercise 7.36 Prove Theorem 7.20. Hint: Show that

1 1
N(z1,22;0,12,0,0%,p) = ) (27 — 2pm1as + x%)}

 epl|lea
2 (1 — p2)'/? [ 2(1-p
—a? 1 T9 pxl)z}

\/1276@[ 2 }\/270&)”2 exp[(2<1p2>

and then integrate over x4 to obtain the marginal density of X .

Exercise 7.37 Prove Theorem 7.21.

Exercise 7.38 Show the matriz

— O
N———

is positive definite.

Exercise 7.39 Show the matriz

is positive semidefinite but not positive definite.

Exercise 7.40 Show directly that if n = 1, then Wishart(v; k,1/0?) is equal
to gamma(v; k/2,1/202?).

Exercise 7.41 Show that in the case where n = 1 the density function in Equal-
ity 7.21 is the univariate t density function which appears in Equality 7.13.
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Exercise 7.42 Prove Theorem 7.29.

Exercise 7.43 Obtain FEquality 7.29.

Exercise 7.44 Obtain the covariance matrix is Example 7.25.

Exercise 7.45 Obtain the covariance matrix is Example 7.24.

Exercise 7.46 Obtain the results in Example 7.25.

Exercise 7.47 Show the value of 03% is 25 in Evample 7.26.

Exercise 7.48 Redo Example 7.26 using a prior Gaussian Bayesian network

in which
or =1 oz =1 O’% =1

ba1 =0 b3 =1 b3y =1
p =2 o =3 p3 = 4.



Chapter 8

Bayesian Structure
Learning

In the previous two chapters we assumed we knew the structure of the DAG
in a Bayesian network (i.e. the conditional independencies in the relative fre-
quency distribution of a set of random variables.). Then we developed a method
for learning the parameters (estimates of the values of the relative frequencies).
Here we assume only that we have a set of random variables with an unknown
relative frequency distribution, and we develop a Bayesian method for learning
DAG structure from data. Section 8.1 develops the basic structure learning
methodology in the case of discrete variables. When a single structure is not
found to be overwhelmingly most probable, averaging over structures is some-
times more appropriate. This topic is discussed in Section 8.2. Section 8.3
concerns learning structure when there are missing data items. Next Section
8.4 discusses the problem of probabilistic model selection in a general setting,
shows that our DAG structure learning problem is an example of probabilistic
model selection, and it further shows that the model selection method we devel-
oped satisfies an important criterion (namely consistency) for a model selection
methodology. Learning structure in the case of hidden variables is the focus of
Section 8.5. Section 8.6 presents a method for learning structure in the case
of continuous variables. The terms ‘probabilistic model’ and ‘model selection’
are defined rigorously in Section 8.4. In the first three sections, by model we
always mean a candidate DAG (or DAG pattern), and we call the search for a
DAG (or DAG pattern) that best fits some data model selection.

8.1 Learning Structure: Discrete Variables

Given a repeatable experiment, whose outcome determines the state of n random
variables, in this section we assume the following:

1. The relative frequency distribution of the variables admits a faithful DAG

441
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representation.

2. Given we believe the relative frequency distribution has all and only some
set of conditional independencies, our beliefs concerning the probability of
the outcome of M executions of the experiment is modeled by a multino-
mial Bayesian network sample with parameter (G, F) such that G entails
all and only those conditional independencies.

In Example 2.10, we showed that if a distribution has the conditional inde-

pendencies
Ie({XHAY}))  Ip({X}AYI{Z)),

and only these conditional independencies, then the distribution does not admit
a faithful DAG representation. In Example 2.11, we showed that if a distribution
has the conditional independencies

Ip({L}AF S Ip({L}{SH)  Ip({F}{V))
Ip({FHALVY)  Ip({L}AF)).

and only these conditional independencies, then the distribution does not admit
a faithful DAG representation. So our first assumption above is that conditional
independencies like these are not the case for the relative frequency distribution.

The second assumption above is simply the assumption we made in the
previous two chapters when we were concerned with learning parameters.

After we develop a schema for learning structure based on these assumptions,
we show how to learn structure using the schema. Then we show how to learn
structure from a mixture of observational and experimental data. Finally, we
discuss the complexity of structure learning.

8.1.1 Schema for Learning Structure

Recall from Section 2.3.1 that Markov equivalence divides the set of all DAGs
containing the same nodes into disjoint equivalence classes, and all DAG in a
given Markov equivalence class are faithful to the same probability distribu-
tions. Recall further that we can create a graph called a DAG pattern which
represents each Markov equivalence class; and that if P admits a faithful DAG
representation, then Theorem 2.6 says there is a unique DAG pattern which is
faithful to P. Therefore, although we cannot identify a unique DAG with the
conditional independencies in P, we can identify a unique DAG pattern with
these conditional independencies. We will use GP as a random variable whose
possible values are DAG patterns gp. As far as the actual relative frequency
distribution is concerned, a DAG pattern event gp is the event that gp is faithful
to the relative frequency distribution.

In some situations we may consider DAGs events. For example, if an event
is the causal structure among the variables, then X; — X, represents the event
that X causes X5, while Xo — X represents the different event that Xo causes
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X;. However, unless otherwise stated, we only consider DAG patterns events,
and as in Section 6.4.4, the notation p|G denotes the density function in the
augmented Bayesian network containing the DAG G. It does not entail that
the DAG G is an event.

We now have the following definition concerning learning structure:

Definition 8.1 The following constitutes a multinomial Bayesian network
structure learning schema:

1. n random variables X1, Xo, ... X, with discrete joint probability distribu-
tion P;

2. an equivalent sample size N;

3. for each DAG pattern gp containing the n wvariables, a multinomial aug-
mented Bayesian network (G, F(G),p|G) with equivalent sample size N,
where G is any member of the equivalence class represented by gp, such
that P is the probability distribution in its embedded Bayesian network.

Note that we denoted the dependence of F and p on G in the previous
definition whereas in the previous two chapters we did. The reason is that now
we are dealing with more than one DAG, whereas in the previous chapters the
DAG was part of our background knowledge.

Example 8.1 We develop a multinomial Bayesian network structure learning
schema containing two variables:

1. Specify two random variables X; and Xa, each having space {1,2}, and

assign
PXi=1,Xo=1)=1/4
PX,=1,X,=2)=1/4
PXy=2,Xo=1)=1/4
P(Xy=2,Xy=2)=1/4.

2. Specify N = 4.

3. The two DAG patterns are shown in Figures 8.1 (a) and (c), and the
augmented Bayesian networks are shown in Figures 8.1 (b) and (d).

Recall G can be any element of the equivalence class represented by gp. So
the DAG in Figure 8.1 (b) could be X1 «— X,. Note that gp, represents no
independencies, while gps represents Ip({ X1}, {X2}).

Note that, even though a Bayesian network containing the DAG X; — X,
can contain a distribution in which X; and X5 are independent, the event gp;
is the event they are dependent and therefore does not allow the possibility that
they are independent. This is why, when we condition on gp;, we make F5; and
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& ®

(@) gp, (c) gp,

beta(f,;; 2,2) beta(f,;; 1,1)  beta(f,,; 1,1) beta(f,; 2,2) beta(f,;; 2,2)

Figure 8.1: DAG patterns are in (a) and (c) and their respective augmented
Bayesian network structures are in (b) and (d).

F5o independent. Recall from Section 6.4.1 that we do this only when X; and
X are dependent.

In general, we do not directly assign a joint probability distribution because
the number of values in the joint distribution grows exponentially with the num-
ber of variables. Rather we assign conditional distributions in all the augmented
Bayesian networks such that the probability distributions in all the embedded
Bayesian networks are the same. A common way to do this is use Theorem
7.8 to construct, for each DAG pattern gp, an augmented Bayesian network
with equivalent sample size N, whose embedded Bayesian network contains the
uniform distribution. That is, for a given DAG pattern gp we first determine a
DAG G in the equivalence class it represents. Then in the augmented Bayesian
network corresponding to G for all 7, j, and k we set

N

Tiqi

Aijk =

Recall r; is the number of possible values of X; in G, and ¢; is the number of
different instantiations of the parents of X; in G. This is how the networks in
Figure 8.1 were created. Heckerman and Geiger [1995] discuss other methods
for assessing priors.
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8.1.2 Procedure for Learning Structure

Next we show how we can learn structure using a multinomial Bayesian network
structure learning schema. We start with this definition:

Definition 8.2 The following constitutes a multinomial Bayesian network
structure learning space:

1. a multinomial Bayesian network structure learning schema containing the
variables X1, Xo, ... Xy;

2. a random variable GP whose range consists of all DAG patterns containing
the n variables, and for each value gp of GP a prior probability P(gp);

3. a set D = {XM X@ XM of n-dimensional random vectors such
that each Xi(h) has the same space as X; (See Definition 7.4.)
For each value gp of GP, D is a multinomial Bayesian network sample
of size M with parameter (G,F(©), where (G,F(©®) is the multinomial
augmented Bayesian network corresponding to gp in the specification of
the schema.

Suppose we have such a space, and a set d (data) of values of the vectors in
D. Owing to Corollary 7.6,

n ql N(G)) Ti F((I(G) +$(G))
P(dlgp) = P(d|G) = [T11 [I—22 ¢
i=1j= 1FN((G JFM(G)) =1 F(agfk))
where a(G and sl]k are their values in (G, F(©) p|G).

A scorlng criterion for a DAG (or DAG pattern) is a function which
assigns a value to each DAG (or DAG pattern) under consideration based on the
data. The expression in Equality 8.1 is called the Bayesian scoring criterion
scoreg, and is used to score both DAGs and DAG patterns. That is,

scorep(d, gp) = scoreg(d, G) = P(d|G).

Scoring criteria are discussed in a more general way in Section 8.4.

Note that in Equality 8.1 we condition on a DAG pattern to compute the
probability that D = d, and in the previous two chapters we did not. Recall in
the previous two chapters we assumed we knew the DAG structure in all our
computations. So this structure was part of the prior background knowledge in
developing our probability space, and therefore we did not condition on it. Note
further that, due to Lemma 7.4, this conditional probability is uniquely defined
(That is, it does depend on our choice of DAGs for (G,F(®), p|G).).

Given a multinomial Bayesian network structure learning space and data,
model selection consists of determining and selecting the DAG patterns with
maximum probability conditional on the data (In general, there could be more
than one maximizing DAG pattern.). The purpose of model selection is to learn
a DAG pattern along with its parameter values (a model) that can be used for
inference and decision making. Examples follow.
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Example 8.2 Suppose we are doing a study concerning individuals who were
married by age 30, and we want to see if there is a correlation between graduating
college and getting divorced. We first specify the following random variables.

Variable | Value | When the Variable Takes this Value
X4 1 Individual graduated college
2 Individual did not graduate college
X5 1 Individual was divorced by age 50
2 Individual was not divorced by age 50

Next we represent our prior beliefs using the Bayesian network structure
learning schema in Example 8.1. Then the DAG pattern gpy in Figure 8.1 (a)
represents the event that they are correlated and the DAG pattern gps in Figure
8.1 (b) represents the event that they are independent.

Suppose next we obtain the data d in the following table:

Case | X; | Xy
1 1 1
2 1 2
3 1 1
4 2 2
5 1 1
6 2 1
7 1 1
8 2 2
Then
P(d| _ I(4) T(2+5)T(2+3) r2) TO+4)T(1+1) N2 Ta+HTI+2)
(dlgp1) = T(418) T(2)0(2) T(215) D)D) T(213) T
= 7.2150 x 10~°
_ I(4) T(245)T'(2+3) I(4) T(2+5)T(2+3)
P(d|gp2) = (I‘(4+8) T(2)I(2) )(I‘(4+8) T(2)(2) )
= 6.7465 x 107°.

If we assign
P(gp1) = P(gp2) = .5,

then owing to Bayes’ Theorem

P(d|gp1)P(gp1)
P(d)

7.2150 x 1075(.5)
P(d)

= «a3.6075 x 10_6)

P(gpild) =
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P(X,=1) = 7/12  P(X,=1|X,=1) = 5/7
P(X,=1|X,=2) = 2/5

Figure 8.2: The Bayeisan network developed in Example 8.2.

and

P(gpald) = w

6.7465 x 1075(.5)
P(d)
= a3.37325 x 1079),

where « is a normalizing constant equal to 1/P(d). Eliminating o we have

Plgpld) 3.6075 x 10-6
g1 3.6075 x 10-6 +3.37325 x 10-6
— 51678
and
3.37325 x 10-6
P(gp2|d)

3.6075 x 1076 +3.37325 x 10-6
= 48322

We select DAG pattern gpy and conclude it is more probable that college atten-
dance and divorce are correlated.

Furthermore, we could develop a Bayesian network, whose DAG is in the
equivalence class represented by gp1, to do inference involving X1 and Xo. Such
a Bayesian network is shown in Figure 8.2. The parameter values in that net-
work were learned using the technique developed in Chapter 6 (Corollary 6.7).
For the 9th case, it could be used, for example, to compute

P(X, = 2X,=1)
_ P(X, = | 1 =2)P(X; =2)
~ PG =X = )P = 1) 1 P(% = 1%, = 9P, =)
(2/5)(5/12) = .28571.

(5/7)(7/12) + (2/5)(5/12)

Example 8.3 Suppose we are doing the same study as in Fxample 8.1, and we
obtain the data d in the following table:
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Case | X1 | Xo
1 1 1
2 1 1
3 1 1
4 1 1
5 2 2
6 2 2
7 2 2
8 2 2
Then
P(d _ I'(4) I(2+4)(2+4) I'(2) I(14+4)(140) I'(2) IL(1+0)I(1+4)
(dlgp1) = L(4+8) T (2)T(2) T(2+4) T(1)T(D) r(2+4) r©(MrQ
= 8.6580x 107°
_ I'(4) I(2+4)'(2+4) I'(4) I(2+4)I'(2+4)
P(d|gp2) = (F(4+8) T(2)(2) )(I‘(4+8) T (2) )
= 4.6851 x 107°.

If we assign
P(gp1) = P(gp2) = -5,

then proceeding as in Fxample 8.2 we obtain
P(gp:1|d) = .94866

and
P(gp2|d) = .05134.

Notice that we become highly confident the DAG pattern is the one with the
dependency because in the data the variables are deterministically related. We
conclude that college attendance and divorce are probably correlated.

Example 8.4 Suppose we are doing the same study as in Example 8.1, and we
obtain the data d in the following table:

ln

Case
1

(V]

MoK — = b0 RO = |

O~ O UL W N
NN N - ==
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Then
P(d|gp1) = (1‘51@8) F(2§3§£§5T4)) (1‘?2(?4) m&fg?ﬁz)) (I‘gj—)@ m&fg?gﬁz))
= 2.4050 x 107°
Plgps) = (P LEHALEeN) (LW resyte )
= 4.6851 x 107°.

If we assign
P(gp1) = P(gp2) = .5,

then proceeding as in Fxample 8.2 we obtain
P(gp1]d) = .33921

and
P(gps|d) = .66079.

Notice that we become fairly confident the DAG pattern is the one with the
independency because in the data the variables are independent. We conclude it
is more probable that college attendance and divorce are independent.

8.1.3 Learning From a Mixture of Observational and Ex-
perimental Data.

Our Bayesian scoring criterion (Equality 8.1) was derived assuming each case
obtained its value according to the same probability distribution. So we can
use it to learn structure only when all the data is observational. That is, when
no values of any variables are obtained by performing a randomized control
experiment (RCE) (See Section 1.4.1.). However, in general, we can have both
observational data and experimental data (data obtained from an RCE) on a
given set of variables. For example, in the medical domain, a great deal of
observational data is contained in routinely collected electronic medical records.
In addition, for certain variables of high clinical interest, we sometimes have data
obtained from an RCE. Cooper and Yoo [1999] developed a method for using
Equality 8.1 to score DAGs using a mixture of observational and experimental
data. We describe their method next.

First we show Equality 8.1 again:

)
n 4 F(N(G)) i F(Q(G)JFS(G))

P(d|gp) = P(d|G) = H H ij H ijk T Sijk
i=1j=1 F(Ni(JG) + Mi(f’)) k=1 F(agflg)

Note that for each variable X;, for each value of the parent set of X;, we have
the term © © ©
D(N;;™) ﬁ F(aijk + sijk)

F(Ni(f’) + Mi(f)) k=1 F(agfk))
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When computing that term, we use all and only those cases in which the value
of X; was obtained from observational data, regardless of how the parents of X;
obtained their values. An example follows:

Example 8.5 Suppose we have the data d in the following table, where the
values obtained using manipulation appear bold-faced and primed:

Case | X; | Xy
1 2 2
2 2 1
3 2 2
4 1 1
5 1 2
6 2/ 2
7 1 1
8 2 2/
9 1 2/
10 2 1
11 1 1

The score of DAG pattern gpy1 in Figure 8.1 is as follows:

P o I'(4) I(24+4)(2+5) I'(2) I(14+2)0(1+1) ') r(A+1r+3)
(dlgp1) = T(4+9) T (2)T(2) T(2+3)  T(HI(1) re+4) rOra)

= 4.5094 x 1075.

Note that the term for Xy is based on only 9 cases. This is because Cases 6
and 7 obtained their values of Xy via manipulation, and therefore they are not
used in the computation of that term. Note further, that the terms for Xo are
based on only 7 cases (three in which X1 has value 1 and four in which it has
value 2). This is because Cases 8, 9, 10 and 11 obtained their values of Xo
via manipulation, and therefore they are not used in the computation of those
terms.

The scoring methodology just presented has been used in several algorithms
and investigations ([Tong and Koller, 2001], [Pe’er et al, 2001]). We assumed the
manipulation is deterministic. Cooper and Yoo [1999] discuss handling the
situation in which the manipulation is stochastic. Cooper [ 2000] describes
learning from a mixture of observational, experimental, and case-control (biased
sample) data.

8.1.4 Complexity of Structure Learning

When there are only a few variables, we can exhaustively compute the proba-
bility of all possible DAG patterns as was done in the previous examples. We
then select the values of gp that maximize P(d|gp) (Note that there could be
more than one maximizing pattern.) However, when the number of variables
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is not small, to find the maximizing DAG patterns by exhaustively consider-
ing all DAG patterns is computationally unfeasible. That is, Robinson [1977]
has shown the number of DAGs containing n nodes is given by the following
recurrence:

fn) = i(1)i+1(’;)2i<n—i>f(nz’) n>2 (8.2)
£(0) !
f) !

It is left as an exercise to show f(2) = 3, f(3) = 25, f(5) = 29,000, and
f(10) = 4.2 x 10'8. There are less DAG patterns than there are DAGs, but
this number also is forbiddingly large. Indeed, Gillispie and Pearlman [2001]
show that an asymptotic ratio of the number of DAGs to DAG patterns equal
to about 3.7 is reached when the number of nodes is only 10. Chickering [1996a]
has proven that for certain classes of prior distributions the problem of finding
the most probable DAG patterns is NP-complete.

One way to handle a problem like this is to develop heuristic search algo-
rithms. Such algorithms are the focus of Section 9.1.

8.2 Model Averaging

Heckerman et al [1999] illustrate that when the number of variables is small and
the amount of data is large, one structure can be orders of magnitude more likely
than any other. In such cases model selection yields good results. However,
recall in Example 8.2 we had little data, we obtained P(gp;|d) = .51678 and
P(gps|d) = 48322, we chose DAG pattern gp; because it was the more probable,
and we used a Bayesian network based on this pattern to do inference for the 9th
case. Since the probabilities of the two models are so close, it seems somewhat
arbitrary to choose gp;. So model selection does not seem appropriate. Next
we describe another approach.

Instead of choosing a single DAG pattern (model) and then using it to do
inference, we could use the law of total probability to do the inference as follows:
We perform the inference using each DAG pattern and multiply the result (a
probability value) by the posterior probably of the structure. This is called
model averaging.

Example 8.6 Recall that given the Bayesian network structure learning schema
and data discussed in Example 8.2,

P(gp1|d) = 51678

and
P(gpa|d) = .48322.
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Case X1 X2 X3
1 1 1 2
2 1 ? 1
3 ? 1 ?
4 1 2 1
5 2 ? ?

Table 8.1: Data on 5 cases with some data items missing

Suppose we wish to compute P(X; = 2| Xy = 1) for the 9th trial. Since neither
DAG structure is a clear ‘winner’, we could compute this conditional probability
by ‘averaging’ over both models. To that end,

2
P =9 X" =1,d) = >~ P(x{” =2 X" =1, gp;, d) P(gps| XS = 1,).
i=1

(8.3)
Note that we now explicitly show that this inference concerns the 9th case using
a superscript. To compute this probability, we need P(gpi|X§9) =1,d), but we
have P(gp;|d). We could either approzimate the former probability by the latter
one, or we could use the technique which will be discussed in Section 8.3 to
compute it. For the sake of simplicity, we will approzimate it by P(gp;|d). We
have then

2
P(x{” =2x{ =1,d) ~ > P(X{Y =2x{" =1, 9p:,d)P(gpi|d)
=1
= (.28571) (.51678) + (.41667) (.48322)
= .34899.

The result that P(Xl(g) = 2|X§9) =1, gp1,d) = .28571 was obtained in Example

8.2. It is left as an exercise to show P(Xl(g) = 2|X§9) = 1,gps,d) = .41667.
Note that we obtained a significantly different conditional probability using model
averaging than that obtained using model selection in Example 8.2.

As is the case for model selection, when the number of possible structures is
large, we cannot average over all structures. In these situations we heuristically
search for high probability structures, and then we average over them. Such
techniques are discussed in Section 9.2.

8.3 Learning Structure with Missing Data

Suppose now our data set has data items missing at random as discussed in
Section 6.5. Table 8.1 shows such a data set. The straightforward way to
handle this situation is to apply the law of total probability and sum over all
the variables with missing values. That is, if D is the set of random variables
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for which we have values, d is the set of these values, and M is the set of random
variables whose values are missing, for a given DAG G,

scorep(d,G) = P(d|G) = Y _ P(d,m|G). (8.4)
T
For example, if X(") = ( th) oo x ) is a random vector whose value

is the data for the hth case in Table 8.1, we have for the data set in that table
that

1 1 1 2 2 3 4 4 4 5

and @) @) y@) () )
M={x? x® xI x xPh

We can compute each term in the sum in Equality 8.4 using Equality 8.1. Since
this sum is over an exponential number of terms relative to the number of miss-
ing data items, we can only use it when the number of missing items is not
large. To handle the case of a large number of missing items we need approxi-
mation methods. One approximation method is to use Monte Carlo techniques.
We discuss that method first. In practice, the number of calculations needed
for this method to be acceptably accurate can be quite large. Another more
efficient class of approximations uses large-sample properties of the probability
distribution. We discuss that method second.

8.3.1 Monte Carlo Methods
We will use a Monte Carlo method called Gibb’s sampling to approximate the

probability of data containing missing items. Gibb’s sampling is one variety of
an approximation method called Markov Chain Monte Carlo (MCMC).
So first we review MCMC.

Review of Markov Chains and MCMC

First we review Markov chains; then we review MCMC; finally we show the
MCMC method called Gibb’s sampling.

Markov Chains This exposition is only for the purpose of review. If you are
unfamiliar with Markov chains, you should consult a complete introduction as
can be found in [Feller, 1968]. We start with the definition:

Definition 8.3 A Markov chain consists of the following:
1. A set of outcomes (states) ey, ea, .. ..

2. For each pair of states e; and e; a transition probability p;; such that

Zpij =1
J



454 CHAPTER 8. BAYESIAN STRUCTURE LEARNING

SIS

Figure 8.3: An urn model of a Markov chain.

3. A sequence of trials (random variables) EY) E®?) ... such that the out-
come of each trial is one of the states, and

P(E<h+1) = €j|E(h) = 61‘) = ng

To completely specify a probability space we need define initial probabilities
P(E© = e;) = pj, but these probabilities are not necessary to our theory and
will not be discussed further.

Example 8.7 Any Markov chain can be represented by an wurn model. One
such model is shown in Figure 8.3. The Markov chain is obtained by choosing
an initial urn according to some probability distribution, picking a ball at random
from that urn, moving to the urn indicated on the ball chosen, picking a ball at
random from the new urn, and so on.

The transition probabilities p;; are arranged in a matrix of transition prob-
abilities as follows:

P11 P12 P13
P21 P22 P23
P=

P31 P32 P33

This matrix is called the transition matrix for the chain.

Example 8.8 For the Markov chain determined by the urns in Figure 8.3 the
transition matrix 1s

1/6 1/2 1/3
P=| 2/9 4/9 1/3
1/2 1/3 1/6

A Markov chain is called finite if it has a finite number of states. Clearly
the chain represented by the urns in Figure 8.3 is finite. We denote by p("
the probability of a transition from e; to e¢; in exactly n trials. This is,
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pl(?) is the conditional probability of entering e; at the nth trial given the initial
state is e;. We say e; is reachable from e; if there exists an n > 0 such that
ng) > 0. A Markov chain is called irreducible if every state is reachable from
every other state.

Example 8.9 Clearly, if p;j > 0 for every i and j, the chain is irreducible.

The state e; has period ¢ > 1 if pgf) = 0 unless n = mt for some integer m,
and t is the largest integer with this property. Such a state is called periodic.
A state is aperiodic if no such ¢ > 1 exists.

Example 8.10 Clearly, if pi; > 0, e; is aperiodic.

We denote by fi(j") the probability that starting from e; the first entry to e;
occurs at the nth trial. Furthermore, we let

fii=> .
n=1

Clearly, f;; < 1. When f;; = 1, we call P;;(n) = fi(jn) the distribution of
the first passage for e¢; starting at e;. In particular, when f;; = 1, we call
Pi(n) = fi(in) the distribution of the recurrence times for e;, and we define
the mean recurrence time for e; to be

(oo}

My = Z nfi(in)'

n=1

The state e; is called persistent if f;; = 1 and transient if f;; < 1. A persistent
state e; is called null if its mean recurrence time p; = oo and otherwise it is
called non-null.

Example 8.11 [t can be shown that every state in a finite irreducible chain is
persistent (See [Ash, 1970].), and that every persistent state in a finite chain is
non-null (See [Feller, 1968].). Therefore every state in a finite irreducible chain
is persistent and non-null.

An aperiodic persistent non-null state is called ergodic. A Markov chain is
called ergodic if all its states are ergodic.

Example 8.12 Quwing to FExamples 8.9, 8.10, and 8.11, if in a finite chain we
have p;; > 0 for every i and j, the chain is an irreducible ergodic chain.

We have the following theorem concerning irreducible ergodic chains:

Theorem 8.1 In an irreducible ergodic chain the limits

r; = lim P (8.5)

n—oo v
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exist and are independent of the initial state e;. Furthermore, r; > 0,

and

where p; is the mean recurrence time of e;.
The probability distribution

P(E:ej)zrj

is called the stationary distribution of the Markov chain.

Conwversely, suppose a chain is irreducible and aperiodic with transition ma-
triz P, and there exists numbers r; > 0 satisfying Equalities 8.6 and 8.7. Then
the chain is ergodic, and the r;s are given by Equality 8.5.

Proof. The proof can be found in [Feller, 1968].

We can write Equality 8.7 in the matrix/vector form

r’ =rTP. (8.8)
That is,
P11 P12 P13
P21 P22 P23

(roore ms o )=(rm r2 15 )| pyy psy pay

Example 8.13 Suppose we have the Markov chain determined by the urns in
Figure 8.3. Then

1/6 1/2 1/3
(7"1 T2 7"3):(7"1 T2 7"3) 2/9 4/9 1/3 . (89)
1/2 1/3 1/6

Solving the system of equations determined by Equalities 8.6 and 8.9, we obtain
(ri re o3 )=(2/7T 3/T 2/7).

This means for n large the probabilities of being in states ey, e, and es are
respectively about 2/7, 3/7, and 2/7 regardless of the initial state.
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MCMC Again our coverage is cursory. See [Hastings, 1970] for a more thor-
ough introduction.

Suppose we have a finite set of states {e1, ea,. .. s}, and a probability distri-
bution P(E = e;) = r; defined on the states such that ; > 0 for all j. Suppose
further we have a function f defined on the states, and we wish to estimate

I= Zf(ej)rj-

We can obtain an estimate as follows. Given we have a Markov chain with transi-
tion matrix P such that r¥ = ( L Ty Ty - ) is its stationary distribution,
we simulate the chain for trials 1,2,...M. Then if k; is the index of the state
occupied at trial ¢, and

M
I = Z % (8.10)

the ergodic theorem says that I’ — I with probability 1 (See [Tierney, 1996].).
So we can estimate I by I’. This approximation method is called Markov
chain Monte Carlo. To obtain more rapid convergence, in practice a burn-
in number of iterations is used so that the probability of being in each state is
approximately given by the stationary distribution. The sum in Expression 8.10
is then obtained over all iterations past the burn-in time. Methods for choosing
a burn-in time and the number of iterations to use after burn-in are discussed
in [Gilks et al, 1996].

It is not hard to see why the approximation converges. After a sufficient
burn-in time, the chain will be in state e; about r; fraction of the time. So if
we do M iterations after burn in, we would have

M s s
Y- ftewy/nr = Y LD S gy,

To apply this method for a given distribution r, we need to construct a
Markov chain with transition matrix P such that r is its stationary distribution.
Next we show two ways for doing this.

Metropolis-Hastings Method Owing to Theorem 8.1, we see from Equal-
ity 8.8 that we need only find an irreducible aperiodic chain such that its tran-
sition matrix P satisfies

r’ =rTP. (8.11)

It is not hard to see that if we determine values p;; such that for all ¢ and j
TiDij = TDji (8.12)

the resultant P satisfies Equality 8.11. Towards determining such values, let
Q be the transition matrix of an arbitrary Markov chain whose states are the
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members of our given finite set of states {e1, ea,...es}, and let

Siq
Hirquw qij # 0, qji #0
Q= Tiqji , (8.13)

0 qij:Oorqu-:O

where s;; is a symmetric function of ¢ and j chosen so that 0 < a;; < 1 for all 4
and j. We then take

Dij = Qi L F ] (8.14)
pi = 1-— Zpij-
j#i

It is straightforward to show that the resultant values of p;; satisfy Equality
8.12. The irreducibility of P must be checked in each application.

Hastings [1970] suggests the following way of choosing s: If ¢;; and ¢;; are
both nonzero, set

Tiqij Tj4ji

1+ >1
Tj4qji T'iij
Sij = . (815)
14 L% 3% <
Tiqij Tiqij
Given this choice, we have
rigi;
1 @ij 70, qji 0, =2 >1
Tidij
— Tidji Tiqji
Q= Li4ji Gii £0, g #£0, 21 <1 . (8.16)
T'i4ij Ehe i T'idij
0 qij:Oorqji:O

If we make Q symmetric (That is, g;; = ¢;; for all ¢ and j.), we have the method
devised by Metropolis et al (1953). In this case

! Qi # 0,15 =13
aij = 7/Ti Qi #0,r5 <7y (8.17)
0 qi; =0

Note that with this choice if Q is irreducible so is P.

Example 8.14 Suppose r" = (1/8 3/8 1/2 ). Choose Q symmetric as
follows:
1/3 1/3 1/3
Q= 1/3 13 1/3
1/3 1/3 1/3
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Choose s according to FEquality 8.15 so that o has the values in Equality 8.17.
We then have

1 1 1
a=|( 1/3 1 1
1/4 3/4 1
Using Equality 8.14 we have
1/3 1/3 1/3
P= 1/9 5/9 1/3

1/12 1/4  2/3
Notice that

/3 1/3 1/3
(1/8 3/8 1/2 ) 1/9 5/9 1/3
/12 1/4 2/3

= (1/8 3/8 1/2)=r"

r’'P

as it should.

Once we have constructed matrices Q and a as discussed above, we can
conduct the simulation as follows:

1. Given the state occupied at the kth trial is e;, choose a state using the
probability distribution given by the ith row of Q. Suppose that state is
€j.

2. Choose the state occupied at the (k + 1)st trial to be e; with probability
a;; and to be e; with probability 1 — ay;.

In this way, when state e; is the current state, e; will be chosen ¢;; fraction of
the time in Step (1), and of those times e; will be chosen «;; fraction of the
time in Step (2). So overall e; will be chosen «;;q;; = p;; fraction of the time
(See Equality 8.14.), which is what we want.

Gibb’s Sampling Method Next we show another method for creating
a Markov chain whose stationary distribution is a particular distribution. The
method is called Gibb’s sampling, and it concerns the case where we have n

random variables Xi, X5,...X,, and a joint probability distribution P of the
variables (as in a Bayesian network). If welet X = ( X; --- X, )T, we

want to approximate

> F)P).

To approximate this sum using MCMC, we need create a Markov chain whose
set of states is all possible values of X, and whose stationary distribution is
P(x). We do this as follows: The transition probability in our chain for going
from state X’ to x” is defined to be the product of these conditional probabilities:
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P(ay|ay, 75, .. . a,)
’

P(zy|2, oy, ... x,)
P(:I:;Cllxlll) e x/k/—15x;c+1 .. .ZI:,In)

P(x;”x/l/a sy xlri—laxlri)'

We can implement these transition probabilities by choosing the event in each
trial using n steps as follows. If we let py (x;%X) denote the transition probability
from x to X in the kth step, we set

LAy P(i}klil,...iﬁk_l,ik_;,_l...f}n) irjzxj for ally#k:
Pi(%;%) = { 0 otherwise.

That is, we do the following for the hth trial:

Pick 2{" using the distribution P(zy|2{" ™", 2" .. (D).

Pick 2{" using the distribution P(xs|2{", "™, .. 2(=D).

Pick x,(ch) using the distribution P(a:k|x§h), . x,(ch_)l, x,(c’jr_ll) ),
Pick (™ using the distribution P(xn|x§h), . ,xﬁf?l, 1),

Notice that in the kth step, all variables except x,(ch) are unchanged, and the new

value of x,(ch) is drawn from its distribution conditional on the current values of
all the other variables.

As long as all conditional probabilities are nonzero, the chain is irreducible.
Next we verify that P(x) is the stationary distribution for the chain. If we let
p(x; X) denote the transition probability from x to X in each trial, we need show

P(%) =) P(x)p(x;%). (8.18)

It is not hard to see that it suffices to show Equality 8.18 holds for each each
step of each trial. To that end, for the kth step we have
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> P(x)pi(x;%)

= Z P(xy,. .. xp)pre(T1, .. T &1, Tp)
] Tn

= Y P(i1,.. &ko1, Tk Bpsr - B) P(Ek[21, . ko1, Br o En)
Tk

= P(@kl#1,- @k, B Bn) Y P(@1, B, T Brgr - )
Tk

= P(JAI]C|JA31, . jk—l; :f?k+1 .. :ﬁn)P(il, .. -ik—laik—&-l e Jin)
= P(,.
= P().

=

o Th—15 Ty Bhegr -+ - Tn)

The second step follows because py(x;%X) = 0 unless &, = x; for all j # k.
See [Geman and Geman, 1984] for more on Gibb’s sampling.

Learning with Missing Data Using Gibb’s Sampling

The Gibb’s sampling approach we use is called the Candidate method (See
[Chib, 1995].). The approach proceeds as follows: Let d be the set of values of
the variables for which we have values. By Bayes’ Theorem we have

Pl - DA G I6)
BEVCEIRI .

(8.19)

where f(®) is an arbitrary assignment of values to the parameters in G. To
approximate P(d|G) we choose some value of f(©, evaluate the numerator in
Equality 8.19 exactly, and approximate the denominator using Gibb’s sampling.
For the denominator, we have

p(fd,G) =Y p(F®)|d, m, G)P(m|d,G)

where M is the set of variables which have missing values.
To approximate this sum using Gibb’s sampling we do the following:

1. Initialize the state of the unobserved variables to arbitrary values yielding
a complete data set dj.

2. Choose some unobserved variable Xi(h) arbitrarily and obtain a value of
Xi(h) using
P, di — {#"}|G)

2

ST P di - {#"}G)

0y

P, — {3},G) =

K2
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()

i
the space of Xi(h). The terms in the numerator and denominator can be
computed using Equality 8.1.

where %, is the value of Xi(h) in dy, and the sum is over all values in

3. Repeat step (2) for all the other unobserved variables, where the complete
data set used in the (k4 1)st iteration contains the values obtained in the
previous k iterations.

This will yield a new complete data set ds.

4. Tterate the previous two steps some number R times where the complete
data set from the the jth iteration is used in the (j + 1)st iteration. In
this manner R complete data sets will be generated. For each complete
data set d; compute

p(F®d;, G)

using Corollary 7.7.

5. Approximate
R

p(F@d, G) =~ .

Although the Candidate method can be applied with any value of (&) of
the parameters, some assignments lead to faster convergence. Chickering and
Heckerman [1997] discuss methods for choosing the value.

8.3.2 Large-Sample Approximations

Although Gibb’s sampling is accurate, the amount of computer time needed
to achieve accuracy can be quite large. An alternative approach is the use
of large-sample approximations. Large-sample approximations require only a
single computation and choose the correct model in the limit. So they can
be used when the size of the data set is large. We discuss four large-sample
approximations next.

Before doing this, we need to further discuss the MAP and ML values of
the parameter set. Recall in Section 6.5 we introduced these values in a context
which was specific to binomial Bayesian networks and in which we needn’t spec-
ify a DAG because the DAG was part of our background knowledge. We now
provide notation appropriate to this chapter. Given a multinomial augmented
Bayesian network (G,F(©®), p|G), the MAP value f(®) of f(©) is the value that
maximizes p(f(®|d,G), and the maximum likelihood (ML) value f(®) of f(&)
is the value such that P(d|f®) G) is a maximum. In the case of missing data
items, Algorithm 6.1 (EM-MAP-determination) can be used to obtain approxi-
mations to these values. That is, if we apply Algorithm 6.1 and we obtain the
values 7)., then
FO & az(?k) + 822(?

ik = ©G) | /(G)
he1 (aijk + Sijk )
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Similarly, if we modify Algorithm 6.1 to estimate the ML value (as discussed
after the algorithm) and we obtain the values 577, , then

1(G)
f((G) - Sijk

ijk = —r; 1(G)”
Zk:lsijk

In the case of missing data items, these approximations are the ones which
would be used to compute the MAP and ML values in the formulas we develop
next.

The Laplace Approximation

First we derive the Laplace Approximation. This approximation is based on the
assumptions that p(f(®)|d,G) has a unique MAP value f(®) and its logarithm
allows a Taylor Series expansion about f(©). These conditions hold for multino-
mial augmented Bayesian networks. As we shall see in Section 8.5.3, they do
not hold when we consider DAGs with hidden variables.

For the sake of notational simplicity, we do not show the dependence on G
in this derivation. We have

P(d) = / P(d|f)p(F)df. (8.20)

Towards obtaining an approximation of this integral, let

9(f) = In (P(d[f)n(f)) .

Owing to Bayes’ Theorem

g(f) = In(ap(fld))

where « is a normalizing constant, which means ¢(f) achieves a maximum at the
MAP value f. Our derivation proceeds by taking the Taylor Series expansion of
g(f) about f. To write this expansion we denote f as a random vector f. That
is, f is the random vector whose components are the members of the set f. We
denote f by f. Discarding terms past the second derivative, this expansion is

o)) = g(F) + (£~ D) g () + 56— g B~ D)

where ¢'(f) is the vector of first partial derivatives of g(f) evaluated with re-
spect to every parameter f;;,, and g”(f) is the Hessian matrix of second
partial derivatives of g(f) evaluated with respect to every pair of parameters
(fijks firjrrr). That is,




464 CHAPTER 8. BAYESIAN STRUCTURE LEARNING

and
9%9(f) 9g(f)
0f1110f111  9f1110f112

1 _ %g(f)
g (f) 0f1120 f111

Now ¢'(f) = 0 because g(f) achieves a maximum at f, which means its derivative
is equal to zero at that point. Therefore,

o)) = g(F) + 5 (£ 9" (B)(E - ). (321)

By = we mean ‘about equal to’. The approximation in Equality 8.21 is guaran-
teed to be good only if f is close to f. However, when the size of the data set is
large, the value of P(d|f) declines fast as one moves away from f, which means
only values of f close to f contribute much to the integral in Equality 8.20. This
argument is formalized in [Tierney and Kadane, 1986].

Owing to Equality 8.21, we have

Pd) = /P(d|f)p(f)df
— [ew (ot
exp (g('f')) / exp G(f “H ' E - %)) df (8.22)

Q

Recognizing that the expression inside the integral in Equality 8.22 is propor-
tional to a multivariate normal density function (See Section 7.2.2.), we obtain
that

P(d) ~ exp (g(F)) 20772 | A7/ = exp (P(AB)p(E)) 202 A7V, (8:23)
where A = —¢g” (f ), and d is the number of parameters in the network, which is
o1 qi(ri — 1). Recall 7; is the number of states of X; and ¢; is the number of
possible instantiations of the parents PA; of X;. In general, d is the dimension
of the model given data d in the region of f. If we do not make the assumptions
leading to Equality 8.23, d is not necessarily the number of parameters in the
network. We discuss such a case in Section 8.5.3.We have then that

= - 1
In (P(d)) ~ In (p(d|f)) +In (p(f)) + g In(2r) - 5 In|A. (8.24)
The expression in Equality 8.24 is called the Laplace approximation or

Laplace score. Reverting back to showing the dependence on G and denoting
the parameter set again as a set, we have that this approximation is given by

Laplace (d,G) = In (p(d|F<G>, G)) +In (p(F<G> |<G)) +§ 1n(27r)fé In|Al. (8.25)
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To select a model using this approximation, we choose a DAG (and thereby
the DAG pattern representing the equivalence class to which the DAG belongs)
which maximizes Laplace (d,G). The value of P(d[f(®) G) can be computed
using a Bayesian network inference algorithm.

We say an approximation method for learning a DAG model is asymptot-
ically correct if, for M (the sample size) sufficiently large, the DAG selected
by the approximation method is one that maximizes P(d|G). Kass et al [1988]
show that under certain regularity conditions

[In (P(d|G)) — Laplace (d, G)| € O(1/M), (8.26)

where M is the sample size and the constant depends on G. For the sake of
simplicity we have not shown the dependence of d on M. It is not hard to see
that Relation 8.26 implies the Laplace approximation is asymptotically correct.

The BIC Approximation

It is computationally costly to determine the value of |A| in the Laplace approx-
imation. A more efficient but less accurate approximation can be obtained by
retaining only those terms in Equality 8.25 that are not bounded as M increases.
Furthermore, as M approaches oo, the determinant |A| approaches a constant
times M9, and the MAP value f(©) approaches the ML value f(®). Retaining
only the unbounded terms, replacing |A| by M9, and using f(® instead of f(©,
we obtain the Bayesian information criterion(BIC) approximation or
BIC score, which is

BIC (d,G) = In (P(d|?<G), (G)) - ‘—;m M,

Schwarz [1978] first derived the BIC approximation. It is not hard to see that
Relation 8.26 implies

In (P(d|G)) — BIC (d,G)| € O(1). (8.27)

It is possible to show the following two conditions hold for a multinomial
Bayesian network structure learning space (Note that we are now showing the
dependence of d on M.):

1. If we assign proper prior distributions to the parameters, for every DAG
G we have
M —o0

2. If Gy is a DAG which maximizes P(dy|G), then for every G not in the
same Markov equivalence class as Gy,

lim P(dy|G)

=0.
M—o0 P(d]v[|(G7]V[)
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It is left as an exercise to show that these two facts along with Relation 8.27
imply the BIC approximation is asymptotically correct.

The BIC approximation is intuitively appealing because it contains 1) a term
which shows how well the model predicts the data when the parameter set is
equal to its ML value; and 2) a term which punishes for model complexity. An-
other nice feature of the BIC is that it does not depend on the prior distribution
of the parameters, which means there is no need to assess one.

The MLED Score

Recall that to handle missing values when learning parameter values we used
Algorithm 6.1 (EM-MAP-determination) to estimate the MAP value f of the
parameter set f. The fact that the MAP value maximizes the posterior distri-
bution of the parameters suggests approximating the probability of d using a
fictitious data set d’ that is consistent with the MAP value. That is, we use the
number of occurrences obtained in Algorithm 6.1 as the number of occurrences
in an imaginary data set d’ to obtain an approximation. We have then that

n al® T N(G)) i F((L(G) Jrs/.(.G))
ijk ijk
MLED (d,G) = d G) = I | I | N(G JrM(G)) H I( (G) ’
el | k=1 @)

where the values of 3;(2) are obtained using Algorithm 6.1. We call this approx-
imation the marginal likelihood of the expected data (MLED) score.
Note that we do not call MLED an approximation because it computes the
probability of fictitious data set d’, and d’ could be substantially larger than d,
which means it could have a much smaller probability. So MLED could only be
used to select a DAG pattern, not to approximate the probability of data given
a DAG pattern.

Using MLED, we select a DAG pattern which maximizes P(d'|G). However,
as discussed in [Chickering and Heckerman, 1996], a problem with MLED is
that it is not asymptotically correct. Next we develop an adjustment to it that
is asymptotically correct.

The Cheeseman-Stutz Approximation

The Cheeseman-Stutz approximation or CS score, which was originally
proposed in [Cheeseman and Stutz, 1995], is given by

CS(d,G) = In (P(d'|G)) — In (p(d'|?<G), G)) +ln (P(d|?<G), (G)) ,

where d’ is the imaginary data set introduced in the previous subsection. The
value of P(d'[f(®),G) can readily be computed using Lemma 6.11. The formula
in that lemma extends immediately to multinomial Bayesian networks.

Next we show the CS approximation is asymptotically correct. We have
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CSd,G) = In(P(d'G))—In (p(d'|?<G>, G)) +n (p(d|%<G>, (G))

In (P(d'|G)) — [BIC d,G) + g In M} + [BIC d,G) + g In M}
— In(P(d|G)) - BIC (d',G) + BIC (d,G).
So
In (P(d|G)) — C'S(d, G)
= [In (P(d|G)) — BIC (d,G)] + [BIC (d',G) — In (P(d'|G))] (8.28)
Relation 8.27 and Equality 8.28 imply
n (P(d[G)) — CS (d,G)| € O(1).

which means the CS approximation is asymptotically correct.

The CS approximation is intuitively appealing for the following reason. If
we use this approximation to actually estimate the value of In(P(d|G)), then
our estimate of P(d|G) is given by

P(d']G)

P(d S e s——
(dIc) P(d'[f©),G)

1 P[f®, G).

That is, we approximate the probability of the data by its probability given the
ML value of the parameter set, but with an adjustment based on d’.

A Comparison of the Approximations

Chickering and Heckerman [1997] compared the accuracy and computer times
of the approximations methods. Their analysis is very detailed, and you should
consult the original source for a complete understanding of their results. Briefly,
they used a model to generate data, and then compared the results of the
Laplace, BIC, and CS approximations to those of the Gibb’s sampling Can-
didate method. That is, this latter method was considered the gold standard.
Furthermore, they used both MAP and ML values in the BIC and CS (We
presented them with ML values).

First, they used the Laplace, BIC, and CS approximations as approxima-
tions of the probability of the data given candidate models. They compared
these results to the probabilities obtained using the Candidate method. They
found that the CS approximation was more accurate with the MAP values,
but the BIC approximation was more accurate with the ML values. Further-
more, with the MAP values, the CS approximation was about as accurate as
the Laplace approximation, and both were significantly more accurate than the
BIC approximation. This result is not unexpected since the BIC approximation
includes a constant term.
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In the case of model selection, we are really only concerned with how well
the method selects the correct model. Chickering and Heckerman [1997] also
compared the models selected by the approximation methods with that selected
by the Candidate method. They found the CS and Laplace approximations both
selected models which were very close to that selected by the Candidate method,
and the BIC approximation did somewhat worse. Again the CS approximation
performed better with the MAP values.

As to time usage, the order is what we would expect. If we consider the
time used by the EM algorithm separately, the order of time usage in increasing
order is as follows: 1) BIC/CS; 2) EM; 3) Laplace; 4) Candidate. Furthermore,
the time usage increased significantly with model dimension for the Laplace
algorithm, whereas it hardly increased for the BIC, CS, and EM algorithms. As
the dimension went from 130 to 780, the time usage for the Laplace algorithm
increased over 10 fold to over 100 seconds and approached that of the Candidate
algorithm. On the other hand, the time usage for the BIC and CS algorithms
stayed close to 1 second, and the time usage for the EM algorithm stayed close
to 10 seconds.

Given the above, of the approximation methods presented here, the CS ap-
proximation seems to be the method of choice. Chickering and Heckerman
[1996,1997] discuss other approximations based on the Laplace approximation,
which fared about as well as the CS approximation in their studies.

8.4 Probabilistic Model Selection

The structure learning problem discussed in Section 8.1 is an example of a more
general problem called probabilistic model selection. After defining ‘probabilis-
tic model’, we discuss the general problem of model selection. Finally we show
that the selection method we developed satisfies an important criterion (namely
consistency) for a model selection methodology.

8.4.1 Probabilistic Models

A probabilistic model M for a set of random variables V is a set of joint prob-
ability distributions of the variables. Ordinarily, each joint probability distrib-
ution in a model is obtained by assigning values to the members of a parameter
set F which is part of the model. If probability distribution P is a member of
model M, we say P is included in M. If the probability distributions in a
model are obtained by assignments of values to the members of a parameters
set F, this means there is some assignment of values to the parameters that
yields the probability distribution. Note that this definition of ‘included’ is a
generalization of the one in Section 2.3.2. An example of a probabilistic model
follows.

Example 8.15 Suppose we are going to toss a die and a coin, neither of which
are known to be fair. Let X be a random variables whose value is the outcome
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of the die toss, and let Y be a random wvariable whose value is the outcome
of the coin toss. Then the space of X is {1,2,3,4,5,6} and the space of Y is
{heads, tails}. The following is a probabilistic model M for the joint probability
distribution of X and Y :

1. F = {fi1, fi2; fis, f1as f15, fre, fors fa2}, 0 < fij <1, Z?Zlflj = 1,
25:1 foj =1

2. For each permissible combination of the parameters in F, obtain a member
of M as follows:
P(X =1i,Y = heads) = fiifa

P(X =i,Y =tails) = f1; foo.

Any probability distribution of X and Y for which X and Y are independent
is included in M; any probability distribution of X and Y for which X and Y
are not independent is not included M.

A Bayesian network model (also called a DAG model) consists of a
DAG G =(V,E), where V is a set of random variables, and a parameter set F
whose members determine conditional probability distributions for the DAGs,
such that for every permissible assignment of values to the members of F, the
joint probability distribution of V is given by the product of these conditional
distributions and this joint probability distribution satisfies the Markov condi-
tion with the DAG. Theorem 1.5 shows that if F determines discrete probability
distributions, the product of the conditional distributions will satisfy the Markov
condition. After this theorem, we noted the result also holds if F determines
Gaussian distributions. For simplicity, we ordinarily denote a Bayesian network
model using only G (i.e. we do not show F.). Note that an augmented Bayesian
network (Definition 6.8) is based on a Bayesian network model. That is, given
an augmented Bayesian network (G, F(®) p|G), (G, F(®)) is a Bayesian network
model. We say the augmented Bayesian network contains the Bayesian network
model.

Example 8.16 Bayesian network models appear in Figures 8.4 (a) and (b).
The probability distribution contained in the Bayesian network in Figure 8.4 (c)
is included in both models, whereas the one in the Bayesian network in Figure
8.4 (d) is included only in the model in Figure 8.4 (b).

A set of models, each of which is for the same set of random variables, is
called a class of models.

Example 8.17 The set of Bayesian networks models contained in the set of all
multinomial augmented Bayesian networks containing the same variables is a
class of models. We call this class a multinomial Bayesian network model
class. Figure 8.4 shows models from the class when V = { X1, X5, X3}, X1 and
X3 are binary, and X, has space size three.
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fa
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© (d)

Figure 8.4: Bayesian network models appear in (a) and (b). The probability
distribution in the Bayesian network in (c) is included in both models, whereas
the one in (d) is included only in the model in (b).

A conditional independency common to all probability distributions included
in model M is said to be in M. We have the following theorem:

Theorem 8.2 In the case of a Bayesian network model G, the set of conditional
independencies in model G is the set of all conditional independencies entailed
by d-separation in DAG G.

Proof. The proof follows immediately from Theorems 2.1.

Model M, is distributionally included in model M, (denoted M; <p
M) if every distribution included in M; is included in Ms. If M; is dis-
tributionally included in My and there exists a probability distribution which
is included in My and not in My, we say M strictly distributionally in-
cluded in M5 (denoted M; <p May). If My is distributionally included in My
and no such probability distribution exists, we say they are distributionally
equivalent (denoted M; ~p Ms). Model M; is independence included in
model My (denoted M; <; Ms) if every conditional independency in My is
in Mj. If Mj is both distributionally included and independence included in
My, we simply say M is included in My (denoted M; < My). Definitions
analogous to those for distributional inclusion hold for strictly independence
included, independence equivalent, strictly included, and equivalent.
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Theorem 8.3 For a multinomial Bayesian network class, Gy is distributionally
included in Go if and only if Gy is independence included in Gs.

Proof. Suppose Gi is independence included in Go. Let P be a distribution
included in Gy. Then every conditional independency in Gy is in P, which
means every conditional independency in Go is a conditional independency in
P. Owing to Theorem 8.2, this means every d-separation in Gg is a conditional
independency in P, which means P satisfies the Markov condition with Go. The
fact that P is included in Go now follows from Theorem 1.4.

In the other direction, suppose Gy is not independence included in Go. Then
there exists some conditional independence (d-separation) I in Gy which is not
in Gy. Let P be a probability distribution included in Gy which is faithful to Gy
(As mentioned following Example 2.9, almost all assignments of values to the
conditional distributions will yield such a P.). This P does not have conditional
independence I, which means P is not included in Gy . Therefore, Gy is not
distributionally included in Go.

Owing to the previous theorem, when we discuss models from a multinomial
Bayesian network class we speak only of inclusion. Note that in this case models
are equivalent if and only if their DAGs are Markov equivalent.

Example 8.18 Suppose our models are from a multinomial Bayesian network
class. Model Gy = X1 — X9 — X3 is strictly included in the model Gy, whose
DAG contains the three variables but only has the edge X1 — X because the
latter model contains more conditional independencies. Therefore, G; < Go.

Example 8.19 Suppose our models are from a multinomial Bayesian network
class. Model X1 — Xo — X3 is equivalent to model X, «+— X5 «— X3 since mod-
els in this class are equivalent if and only if their DAGs are Markov equivalence.

Given some class of models, if M5 includes probability distribution P and
there exists no M in the class such that M; includes P and M; <p Mo,
then M is called a distributionally inclusion optimal map. Analogous
definitions hold for independence inclusion optimal map and inclusion
optimal map.

Suppose we have a multinomial Bayesian network class of models for a set of
random variables V. Then if a probability distribution P of V admits a faithful
DAG representation, DAG G is faithful to P if and only if model G is an inclusion
optimal map of P. However, if DAG G satisfies the minimality condition with P
(See Definition 2.11.), model G is not necessarily an inclusion optimal map. For
example, the DAG G in Figure 2.18 (c) satisfies the minimality condition with
the DAG referenced in that figure, but model G is not an inclusion optimal map
since the model containing the DAG in Figure 2.18 (a) is strictly included in
it. On the other hand, if model G is an inclusion optimal map of P, then DAG
G satisfies the minimality condition with P. Section 8.4.3 discusses a model
G (namely the one containing the DAG in Figure 8.6) which is an inclusion
optimal map of P but DAG G is not faithful to P.
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Given some class of models, if M5 includes probability distribution P and
there exists no M in the class such that M includes P and M; has smaller
dimension than Mo, then M, is called a parameter optimal map of P. In the
case of Bayesian network models (DAG models), the dimension of the model
is the number of parameters in the models. However, as we shall in Section
8.5.3, this is not always the case. Theorem 8.6 will show that in the case of a
multinomial Bayesian network class, a parameter optimal map is an inclusion
optimal map.

8.4.2 The Model Selection Problem

In general, the problem of model selection is to find a concise model which,
based on a random sample of observations from the population that determines
a relative frequency distribution (See Section 4.2.1.), includes an approxima-
tion of the relative frequency distribution. As previously done, we use d to
represent the set of values (data) of the sample. To perform model selection,
we develop a scoring function score (called a scoring criterion) which assigns a
value score(d, M) to each model under consideration based on the data. We
have the following definition concerning scoring criteria:

Definition 8.4 Let dys be a set of M wvalues (data) of a set of random variables,
score be a scoring criterion over some class of models for the random variables,
and Py be the joint distribution determined by the data dys. We say score is
consistent for the class of models if the following two properties hold:

1. For M sufficiently large, if My includes Py; and My does not, then

score(dyr, M1) > score(dyr, Ms).

2. For M sufficiently large, if M1 and My both include Py and My has
smaller dimension than Ms, then

score(dyr, My) > score(dpr, Ma).

We call the distribution determined by the data the generative distribu-
tion. Henceforth, we use that terminology.

If the data set is sufficiently large, a consistent scoring criterion chooses a
parameter optimal map of the generative distribution. This parameter optimal
map is attractive for the following reason: If the set of values of the random
variables is a random sample from an actual relative frequency distribution
and we accept the von Mises theory (See Section 4.2.1.), then as the size of the
data set becomes large the generative distribution approaches the actual relative
frequency distribution. Therefore, a parameter optimal map, of the generative
distribution, will in the limit be a most parsimonious model that includes the
actual relative frequency distribution.
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8.4.3 Using the Bayesian Scoring Criterion for Model Se-
lection

First we show the Bayesian scoring criterion is consistent. Then we discuss using
it when the faithfulness assumption is not warranted.

Consistency of Bayesian Scoring

If the actual relative frequency distribution admits a faithful DAG representa-
tion, our goal is to find a DAG (and its corresponding DAG pattern) which is
faithful to that distribution. If it does not, we would want to find a DAG G such
that model G is a parameter optimal independence map of that distribution. If
we accept the von Mises theory (See Section 4.2.1.), then a consistent scoring
criterion (See Definition 8.4.) will accomplish the latter task when the size of
the data set is large. Next we show the Bayesian scoring criterion is consistent.
After that, we show that in the case of DAGs a consistent scoring criterion finds
a faithful DAG if one exists.

Lemma 8.1 In the case of a multinomial Bayesian network class, the BIC
scoring criterion (See Section 8.8.2.) is consistent for scoring DAGs.

Proof. Haughton [1988] shows that this lemma holds for a class consisting of
curved exponential models. Geiger at al [1998] show a multinomial Bayesian
network class is such a class.

Theorem 8.4 In the case of a multinomial Bayesian network class, the Bayesian
scoring criterion scorep(d,G) = P(d|G) is consistent for scoring DAGs.

Proof. The Bayesian scoring criterion scores a model G in a multinomial

Bayesian network class by computing P(d|G) using a multinomial augmented

Bayesian network containing G. In Section 8.3.2 we showed that for multinomial

augmented Bayesian networks, the BIC score is asymptotically correct, which

means for M (the sample size) sufficiently large, the model selected by the BIC

score is one that maximizes P(d|G). The proof now follows from the previous

lemma.

Before proceeding, we need the definitions and lemmas that follow.

Definition 8.5 We say edge X — Y is covered in DAG G if X and Y have
the same parents in G except X is not a parent of itself.

Definition 8.6 If we reverse a covered edge in a DAG, we call it a covered
edge reversal.

Clearly, if we perform a covered edge reversal on a DAG G we obtain a DAG
in the same Markov equivalence class as G.

Theorem 8.5 Suppose Gyi and Go are Bayesian network models such that
G1 <y Gy. Let r be the number of links in Gy that have opposite orienta-
tion in Gy, and let m be the number of links in Go that do not exist in Gy in
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either orientation. There exists a sequence of r 4+ 2m distinct operations to Gy,
where each operation is either an edge addition or a covered edge reversal, such
that

1. after each operation Gy is a DAG and Gy <; Gg;

2. after all the operations G; = Go.
Proof. The proof can be found in [Chickering, 2002].

Definition 8.7 Size Equivalence holds for a class of Bayesian network mod-
els if models containing Markov equivalent DAGs have the same number of pa-
rameters.

It is not hard to see that size equivalence holds for a multinomial Bayesian
network class.

Theorem 8.6 Given a class of Bayesian network models for which size equiv-
alence holds, a parameter optimal map of a probability distribution P is an
independence inclusion optimal map of P.

Proof. Let Go be a parameter optimal map of P. If Go is not an independence
inclusion optimal map of P, there is some model G1 which includes P and

Gy <1 Go.

Owing to Theorem 8.5, we can transform Gi to Go with a sequence of edge
additions and covered edge reversals. If there are no edge additions, Gi and
Go are in the same Markov equivalence class, which means Gy £; Go. So
there must be at least one edge addition, which strictly increases the size of the
model. Since we assumed size equivalence, covered edge reversals leave the size
of the model unchanged. We conclude the model containing Go contains more
parameters than the model containing Gy, which contradicts the fact that Go is
a parameter optimal map of P.

The converse of the preceding theorem does not hold. That is, an inde-
pendence inclusion optimal map is not necessarily a parameter optimal map.
Section 8.4.3 presents an example illustrating this.

Corollary 8.1 Given a multinomial Bayesian network class, if a model is a
parameter optimal map of P and P admits a faithful DAG representation, then
the DAG in the model is faithful to P.

Proof. Clearly, size equivalence holds for this class. Therefore, owing to the
previous theorem, a parameter optimal map of P is an independence inclusion
optimal map of P. It is not hard to see that for this class, if P admits a faithful
DAG representation then, if model G is an independence optimal inclusion map
of P, DAG G must be faithful to P.

Theorem 8.7 In the case of a multinomial Bayesian network class, for M
(the sample size) sufficiently large, the Bayesian scoring criterion chooses an
inclusion optimal map of the generative distribution P. If P admits a faithful
DAG representation, it chooses a model whose DAG 1is faithful to P.

Proof. The proof follows Theorems 8.3, 8.4, 8.6, and Corollary 8.1.
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Figure 8.5: We assume the probability distribution of job requring night plane
travel (N), lung cancer (L), tuberculosis (T), fatigue (F'), and a postive chest
X-ray (C) is faithful to this DAG.

Results When the Faithfulness Assumption is not Warranted

Recall from Section 8.1 that our structure learning methodology assumes the
relative frequency distribution of the variables admits a faithful DAG represen-
tation. Suppose we have the following random variables:

Variable | Value | When the Variable Takes this Value
T t1 Patient has tuberculosis
t2 Patient does not have tuberculosis
N nl Patient’s job requires night plane travel
n2 Patient job does not require night plane travel
L 1 Patient has lung cancer
12 Patient does not have lung cancer
F f1 | Patient is fatigued
f2 | Patient is not fatigued
C cl Patient has a positive chest X-ray
c2 Patient has a negative chest X-ray

Suppose further that lung cancer and the job requiring night plane travel each
cause fatigue, lung cancer and tuberculosis each cause a positive chest X-ray,
there are no other causal relationships among the variables, and there are no
hidden common causes. Then, due to the argument in Section 2.6, we would
expect the relative frequency distribution of the five variables to be faithful to
the DAG in Figure 8.5. Assume this is the case. Then owing to the result in
Example 2.11, the marginal distribution of N, F; C, and T is not be faithful
to any DAG. Assume next that we are observing only these four variables and
we obtain data on them. That is, assume we know nothing about lung cancer,
indeed we have not even identified it as a feature of humans. Then the assump-
tion of faithfulness is not valid. Suppose we score models using the Bayesian
scoring criterion (Equality 8.1). Owing to Theorems 8.4 and 8.7, if the data set
is sufficiently large, a parameter optimal independence map, which is also an in-
clusion optimal map, of the generative distribution P will be chosen. Assuming
that distribution is the same as the actual relative frequency distribution, the
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(@) (b)

Figure 8.6: If P is faithful to the DAG in Figure 8.5, both DAG patterns
represent inclusion optimal models.

DAG in the model will be one from the Markov equivalence class represented
by the DAG pattern in either Figure 8.6 (a) or Figure 8.6 (b). Say it is a model
containing a DAG G from the equivalence class represented in Figure 8.6 (a).
DAG G does not entail Ip({N},{C}), which holds for the actual relative fre-
quency distribution. Nevertheless, since P is included in model G, DAG G is an
independence map of P, which means we can use DAG G in a Bayesian network
containing the variables. We can then use our inference algorithms for Bayesian
networks to do inference with the variables.

You may ask what determines whether a model corresponding to Figure 8.6
(a) or one corresponding to Figure 8.6 (b) is chosen. It depends on the size
of the models. For example, suppose all variables are binary except F, which
has space size three. Then a model containing a DAG in the equivalence class
represented in Figure 8.6 (a) has smaller dimension, and therefore such a model
will be chosen. If all variables are binary, the dimension is the same regardless
of the equivalence class and therefore the Bayesian score is the same.

8.5 Hidden Variable DAG Models

Next we discuss DAG models containing hidden variables. A hidden variable
DAG model is a DAG model containing a DAG G =(V UH, E), where V =
{X1,Xs,...X,,} and H={Hy, Hs,... Hy} are disjoint sets of random variables.
The variables in V are called observable variables, while the variables in H
are called hidden variables. In practice we obtain data only on the variables
in V. By using hidden variables, we can obtain more models for V than we could
if we considered only DAG models containing DAGs of the form G =(V, E).
After discussing hidden variable DAG models in which the DAG entails
more conditional independencies than any DAG containing only the observables,
we present hidden variable DAG models in which the DAG entails the same
conditional independencies as one containing only the observables. Next we
discuss computing the dimension of a hidden variable DAG model. Then we
illustrate how changing the space sizes of the hidden variables changes the model.
Finally, we address efficient methods for scoring hidden variable DAG models.
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Figure 8.7: A DAG containing a hidden variable.

8.5.1 Models Containing More Conditional Independen-
cies than DAG Models

Recall in Section 8.4.3 we showed that if, P is faithful to the DAG in Figure
8.5, the Bayesian scoring criterion will choose a model whose DAG is in one
of the equivalence classes represented in Figure 8.6. The DAG in the model
does not entail all the conditional independencies in P. However, if we consider
only DAGs containing the four observable variables, this is the best we can
do because the probability distribution of these four variables does not admit
a faithful DAG representation. Alternatively, we could also consider a hidden
variable DAG model Gy containing the DAG in Figure 8.7. The variable H is a
hidden variable because it is not one of the four variables on which we have data
(Notice that we shade nodes representing hidden variables.). This variable does
not represent lung cancer (Recall we are assuming we have not even identified
lung cancer as a feature of humans.). Rather it is a hypothesized variable about
which we have no knowledge. We could give H any size space we wish. For the
current discussion, assume it is binary. Mathematically, this is really a case of
missing data items. We simply have all data items missing for H. So we can
compute P(d|Gg) in the same way as we computed the probability of data with
missing data items in Equality 8.4. That is,

2M
scorep(d,Gy) = P(d|Gx) =Y P(di|Gr), (8.29)
1=1

where M is the size of the sample, and d; is data on the five variables, N, F, C,
T, and H, with the values of N, I, C', and T being their actual ones and those
of H ranging over all of their 2M possibilities.

For example, suppose we have the data d in the following actual table:
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Case | N | F | C| T

1 nl | fl1|c2|t2
nl | f2|cl|t2
n2 | fl1|c2| t2
n2 | f2c2|tl
nl | fl]el]tl
n2 | fl1|c2| t2
n2 | fl|ecl|tl
n2 | fl1|cl| t2
n2 | fl1|c2|tl

© 00 O T Wi

Then d; and an arbitrary intermediate d; are respectively the data in the fol-
lowing tables:

Case | N| F|C|T|H Case | N | F|C|T| H

1 [ni|fr]ec2|t2]hnt 1 [nl] f1i]e2]e2]n1

2 | nl| f2|cl|t2]hl 2 | nl| f2|c|t2]h2

3 | n2| f1|e2|t2]hl 3 | n2| f1|e2|t2] h2

gl Ao m2f2le2 | b4 | n2| f2 02| tl| hl
Y5 |ml| fl]ecl|tl|hl Y5 | nl| fl]ecl|tl] h2
6 |n2| f1|c2|t2]hl 6 | n2| f1|c2|t2]hnl

7 | n2| f1|el|tl]hl 7 | n2| f1|el|tl] A2

8 | mn2| fl|ecl|t2]hl 8 | n2| fl|ecl|t2] h2

9 | n2| f1|e2|tl]hl 9 | n2| f1|e2|tl]hnl

Given we score all the possible DAG models containing only the variables
N, F, C, and T using the standard Bayesian scoring criterion, and we score
the hidden variable DAG model Gy we’ve discussed using Equality 8.29, you
may ask which model should win when the sample size is large. Theorem 8.4
is not applicable because that theorem assumes the class consists of curved
exponential models, and Geiger et al [1998] show a hidden variable DAG model
G =(VUH,E) is not a curved exponential model for V. Rather it is a stratified
exponential model. For hidden variable DAG models, Meek [1997] sketched a
proof showing the Bayesian scoring criterion sastifies the first requirement in a
consistent scoring criterion. That is, he illustrated that for M sufficiently large
if the hidden variable model Gy includes Py; and model G does not, then the
Bayesian scoring criterion will score Gy higher than G. Furthermore, Rusakov
and Geiger [2002] proved that the BIC and Bayesian scoring criterion satisfy
both requirements for consistency (i.e. they show BIC and the Bayesian scoring
criterion are consistent.) in the case of naive hidden variable DAG models,
which are models as follows: There is a single hidden variable H, all observables
are children of H, and there are no edges between any observables. Model Gg
is not a naive hidden variable DAG model. However, it seems the Bayesian
scoring criterion is consistent in the case of more general hidden variable DAG
models. If it consistent in the case of model Gz and if the relative frequency
distribution is faithful to the DAG in Figure 8.5, then Gy should be chosen
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Figure 8.8: Value and shape are not independent, but they are conditionally
independent give color.

when the data set is large. It is left an an exercise to test this conjecture by
generating data and scoring the models.

A problem with using this technique lies in identifying which hidden vari-
able DAG models to consider. That is, why should we suspect that the joint
distribution of N, F', C', and T does not admit a faithful DAG representation,
and, even if we did suspect this, why should we choose the correct hidden vari-
able DAG model? Chapter 10 presents an algorithm for determining whether a
probability distribution admits a faithful DAG representation, and it develops a
method for discovering hidden variables when this is not the case. Furthermore,
that chapter discusses applying the theory to causal learning, and it shows that
in many applications the variable H in Figure 8.7 can be considered a hidden
common cause of ' and C.

8.5.2 Models Containing the Same Conditional Indepen-
dencies as DAG Models

Recall Example 2.14 showed it is possible to embed a distribution P faithfully
in two DAGs, and yet P is included in only one of the DAGs. Owing to this
fact, data can sometimes distinguish a hidden variable DAG models from a
DAG model containing no hidden variables, even when both models contain the
same conditional independencies. First we illustrate this. Then we discuss an
application to learning causal influences.

Distinguishing a Hidden Variable Model From a DAG Model

When a hidden variable DAG model and a DAG model, which has no hidden
variables, contain the same conditional independencies, the hidden variables are
somewhat obscure entities. To impart intuition for them we develop a lengthy
urn example. Please bear with us as the outcome should be worth the effort.

Suppose we have an urn containing the objects in Figure 8.8. Let random
variables V, S,and C' be defined as follows:
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P(cl) = 1/2
P(c2) = 1/2

P(s1) = 1/2 P(vils1) = 1/3

P(s2) = 1/3 P(v2|s1) = 1/2

P(s3) = 1/6 P(v3|sl) = 1/6

P(vl|s2) = 1/4

P(v2|s2) = 1/2

P(vijcl) = 1/2 P(sllcl) = 2/3 P(v3|s2) = 1/4
P(v2|cl) = 1/2 P(s2|c1) = 1/3

- _ P(v1]s3) =0

P(v3lc1) =0 P(s3lc1) =0 P(v2[s3) = 1/2

P(v1|c2) = 0 P(sl|c2) = 1/3 P(v3|s3) = 1/2
P(v2|c2) = 1/2 P(s2|c2) = 1/3
P(v3|c2) = 1/2 P(s3|c2) = 1/3

(@) (b)

Figure 8.9: The probability distribution of V' and S obtained by sampling from
the objects in Figure 8.8 is contained in both Bayesian networks.

Variable | Value | Outcomes Mapped to this Value
\% vl All objects containing a ‘1’

v2 | All objects containing a ‘2’

v3 All objects containing a ‘3’

S sl All square objects

52 All circular objects

s3 All arrow objects

C cl All black objects

c2 All white objects

Suppose further we sample with replacement from the urn. Assuming the gen-
erative distribution is the same as the distribution obtained by applying the
principle of indifference to the objects in the urn, clearly we have

1p(V,5) and 1p(V, S|C),

where P denotes the generative distribution. It is not hard to see then that the
probability distribution of V', S, and C'is contained in the Bayesian network in
Figure 8.9 (a), and the probability distribution of only V' and S is contained in
the Bayesian networks in both Figure 8.9 (a) and Figure 8.9 (b).

Suppose next we have an urn containing the objects in Figure 8.10. Let
random variables V' and S be defined as before. If we sample from this urn and
the generative distribution is same as that obtained by applying the principle of
indifference to the objects, this distribution is contained in the Bayesian network
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Figure 8.10: There is no apparent division of the objects which renders value

and shape independent.

P(s1) = 3/11 P(vi|sl) = 1/3
P(s2) = 4/11 P(v2|s1) = 1/3
P(s3) = 4/11 P(v3|s1) = 1/3

P(v1|s2) = 1/4
P(v2|s2) = 1/4
P(v3|s2) = 1/2

P(v1|s3) = 1/4
P(v2|s3) = 1/2
P(v3|s3) = 1/4

Figure 8.11: The probability distribution of V' and S obtained by sampling from
the objects in Figure 8.10 is contained in this Bayesian network.

in Figure 8.11. Could the distribution also be contained in a Bayesian network
like the one in Figure 8.9 (a)? That is, is there some division of the objects into
two groups that renders V' and S independent in each group? Note that the
coloring of the objects in Figure 8.8 was only for emphasis. It is the fact that
they could be divided into two groups such that V' and S are independent in
each group that enabled us to represent the probability distribution of V' and S
using the Bayesian network in Figure 8.9 (a).

Towards answering the question just posed, consider the two models in Fig-
ure 8.12. The Bayesian network in Figure 8.9 (a) is obtained from the model in
Figure 8.12 (a) by assigning values to the parameters in the model. The only
difference is that we labeled the root C instead of H in the DAG in Figure 8.9
(a) because at that time we were identifying color. The Bayesian networks in
Figure 8.9 (a) and Figure 8.11 are obtained from the model in Figure 8.12 (b)
by assigning values to the parameters in the model. The question posed in the
previous paragraph can now be stated as follows: Is the probability distribution
in the Bayesian network in Figure 8.11 included in the hidden variable DAG
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Figure 8.12: A hidden variable DAG model for V and S is in (a) and a DAG
model for V' and S is in (b).

model in Figure 8.12 (a)? It is very unlikely for the following reason. Although
the model in Figure 8.12 (a) has more parameters than the one in Figure 8.12
(b), some of the parameters are redundant. As a result, it effectively has fewer
parameters and its dimension is smaller. This is discussed much more in Section
8.5.3. As a result of its dimension being smaller, it includes far less distribu-
tions. Specifically, every distribution included in the model in Figure 8.12 (a)
is clearly included in the model in Figure 8.12 (b). However, if we consider the
space consisting of the set of all possible permissible assignments to the para-
meters in the model in Figure 8.12 (b), the subset, whose members yield joint
distributions included in the model in Figure 8.12 (a), has Lebesgue measure
zer